The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] scanning(79hit)

61-79hit(79hit)

  • A New Image Sensor with Space Variant Sampling Control on a Focal Plane

    Yasuhiro OHTSUKA  Takayuki HAMAMOTO  Kiyoharu AIZAWA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1331-1337

    We propose a new sampling control system on image sensor array. Contrary to the random access pixels, the proposed sensor is able to read out spatially variant sampled pixels at high speed, without inputting pixel address for each access. The sampling positions can be changed dynamically by rewriting the sampling position memory. The proposed sensor has a memory array that stores the sampling positions. It can achieve any spatially varying sampling patterns. A prototype of 64 64 pixels are fabricated under 0.7 µm CMOS precess.

  • Photosynthetic Activity Measurement of Plants Using Photoacoustic Spectroscopy Combined with Confocal Scanning Microscopy

    Hideo KOJIMA  Masahiro TAWATA  Teruhiro TAKABE  Hiroshi SHIMOYAMA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1142-1148

    Photoacoustic spectroscopy (PAS) has recently received much attention especially for plant photosynthesis research, because this technique is capable of performing non-destructive measurement without any pre-treatment of specimens. So far we have developed a PAS system equipped with an open photoacoustic cell (OPC), which allows in situ and in vivo measurements of plant photosynthesis of intact undetached leaves. In this study, we have measured photosynthesis reaction using OPC and developed a Confocal Scanning Photoacoustic Microscopy (CSPAM) system, in which PAS is combined with confocal scanning laser microscopy. The system allows simultaneous measurement of acoustic signal and another signal such as fluorescence, and also gives two- and three- dimensional intensity distributions of these signals, thereby giving two- and three- dimensional information about photosynthetic activity of plants.

  • Fabrication of Coplanar Microstructures Composed of Multiple Organosilane Self-Assembled Monolayers

    Hiroyuki SUGIMURA  Atsushi HOZUMI  Osamu TAKAI  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1099-1103

    Micropatterning of organosilane self-assembled monolayers (SAMs) was demonstrated on the basis of photolithography using an excimer lamp radiating vacuum ultra-violet (VUV) light of 172 nm in wavelength. This lithography is generally applicable to micropatterning of organic thin films including alkyl and fluoroalkyl SAMs, since its patterning mechanism involves cleavage of C-C bonds in organic molecules and subsequent decomposition of the molecules. In this study, SAMs were prepared on Si substrates covered with native oxide by chemical vapor deposition in which an alkylsilane, that is, octadecyltrimethoxysilane [CH3(CH2)17Si(OCH3)3, ODS] or a fluoroalkylsilane, that is, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxy-silane [CF3(CF2)7CH2CH2Si(OCH3)3, FAS] were used as precursors. Each of these SAMs was photoirradiated through a photomask placed on its surface. As confirmed by atomic force microscopy and x-ray photoelectron spectroscopy, the SAMs were decomposed and removed in the photoirradiated area while the masked areas remained undecomposed. A micropattern of 2 µm in width was successfully fabricated. Furthermore, microstructures composed of two different SAMs, that is, ODS and FAS, were fabricated as follows. For example, an ODS-SAM was first micropatterned by the VUV-lithography. Since, the VUV-exposed region on the ODS-SAM showed an affinity to the chemisorption of organosilane molecules, the second SAM, i. e. , FAS, confined to the photolithographically defined pattern was successfully fabricated. Due to the electron negativity of F atoms, the FAS covered region showed a more negative surface potential than that of the ODS surface: its potential difference was ca. 120 mV as observed by Kelvin probe force microscopy.

  • Radiation Characteristics of Active Frequency-Scanning Leaky-Mode Antenna Arrays

    Chien-Jen WANG  Christina F. JOU  Jin-Jei WU  Song-Tsuen PENG  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1223-1228

    Active frequency-tuning beam-scanning leaky-mode antenna arrays have been demonstrated in this paper. These antennas integrated one or several microstrip leaky-wave antenna elements with a single varactor-tuned HEMT VCO as an active source. Noted that the measured scan angles of the 11 and 14 antennas were approximately 24 and the scanning range of the 12 antenna was 20. Furthermore, reflected wave due to the open end of each leaky-wave antenna element has been suppressed by the symmetric configuration of this antenna array and the antenna efficiency increases. When comparing with the measured radiation pattern of the single element antenna, we found that the 12 and 14 antenna arrays can effectively suppress the reflected power by more than 5.5 dB and 10.5 dB, respectively, at 10.2 GHz. The power gain are more than 2 dB and 3.16 dB higher than the single element antenna with a measured EIRP of 18.67 dBm.

  • Wide Angle Phase-Shifterless Beam Scanning in Unilaterally Coupled Active Antenna Arrays

    Ragip ISPIR  Shigeji NOGI  Minoru SANAGI  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1188-1194

    In coupled oscillator arrays, it is possible to control the inter-element phase shift up to 180 by free-running frequency distribution based on injection-locking phenomenon. In this paper, a new technique to control the inter-element phase shift electronically up to the maximum extent of 360 is reported. Oscillators are unilaterally coupled to the preceding oscillator through one of the two paths, which differ from each other 180 in electrical length and each includes an amplifier. Turning on the desired amplifier one can control the phase shift either -180 to 0 or 0 to 180. The technique was applied in a three-element oscillator array each coupled to a patch antenna via a round aperture. The radiation beam of the array could be scanned 47 in total.

  • A Novel Adaptive Pixel Decimation for Block Motion Vector Estimation

    Yankang WANG  Yanqun WANG  Hideo KURODA  

     
    LETTER-Source Encoding

      Vol:
    E82-B No:1
      Page(s):
    188-191

    This paper presents a novel approach to pixel decimation for motion estimation in video coding. Early techniques of pixel decimation use regular pixel patterns to evaluate matching criterion. Recent techniques use adaptive pixel patterns and have achieved better efficiency. However, these adaptive techniques require an initial division of a block into a set of uniform regions and therefore are only locally-adaptive in essence. In this paper, we present a globally-adaptive scheme for pixel decimation, in which no regions are fixed at the beginning and pixels are selected only if they have features important to the determination of a match. The experiment results show that when no more than 40 pixels are selected out of a 1616 block, this approach achieves a better search accuracy by 13-22% than the previous locally-adaptive methods which also use features.

  • Design of Checkerboard-Distortion-Free Multidimensional Multirate Filters

    Tomohiro TAMURA  Masaki KATO  Toshiyuki YOSHIDA  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1598-1606

    This paper discusses a design technique for multidimensional (M-D) multirate filters which cause no checkerboard distortion. In the first part of this paper, a necessary and sufficient condition for M-D multirate filters to be checkerboard-distortion-free is derived in the frequency domain. Then, in the second part, this result is applied to a scanning line conversion system for television signals. To confirm the effectiveness of the derived condition, band-limiting filters with and without considering the condition are designed, and the results by these filters are compared. A reducibility of the number of delay elements in such a system is also considered to derive efficient implementation.

  • Approximate Frequency Beam Command of the RPFSR System in the Ground Based Coordinate System

    Min Joon LEE  Iickho SONG  Suk Chan KIM  Hyung-Myung KIM  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E81-A No:8
      Page(s):
    1748-1750

    The phase and frequency commands of a rotating radar system, that utilizes the frequency scanning and phase shifters to steer the beam in the azimuth and elevation directions, respectively, are derived in terms of the angles of the ground based coordinate system. The frequency equation derived is approximated to a simple form to reduce the calculation time for real time multi-function radar systems. It is shown that the approximate frequency commands are in good agreement with the exact ones if the range of the azimuth scanning is not too wide.

  • A Novel Block Matching Algorithm for Motion Estimation

    Yankang WANG  Yanqun WANG  Hideo KURODA  

     
    PAPER-Source Encoding

      Vol:
    E81-B No:3
      Page(s):
    575-585

    Conventional fast block-matching algorithms, such as TSS and DSWA/IS, are widely used for motion estimation in the low-bit-rate video coding. These algorithms are based on the assumption that when searching in the previous frame for the block that best matches a block in the current frame, the difference between them increases monotonically when a matching block moves away from the optimal solution. Unfortunately, this assumption of global monotonicity is often not valid, which can lead to a high possibility for the matching block to be trapped to local minima. On the other hand, monotonicity does exist in localized areas. In this paper, we proposed a new algorithm called Peano-Hilbert scanning search algorithm (PHSSA). With the Peano-Hilbert image representation, the assumption of global monotonicity is not necessary, while local monotonicity can be effectively explored with binary search. PHSSA selects multiple winners at each search stage, minimizing the possibility of the result being trapped to local minima. The algorithm allows selection of three parameters to meet different search accuracy and process speed: (1) the number of initial candidate intervals, (2) a threshold to remove the unpromising candidate intervals at each stage, and (3) a threshold to control when interval subdivision stops. With proper parameters, the multiple-candidate PHSSA converges to the optimal result faster and with better accuracy than the conventional block matching algorithms.

  • Theoretical Estimation of the Pick-Up Characteristics of the Fiber Probe Illuminated by Evanescent Field

    Yoshinari ISHIDO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E80-C No:1
      Page(s):
    184-189

    In this letter, a theoretical estimation of pick-up characteristics of the fiber probe of Photon Scanning Tunneling Microscopy based on the Wiener-Hopf technique taken account of the weakly guiding approximation are reported. As a result, it is found that diffracted waves by the extremity of the fiber probe mainly act on the mode excitation rather than transmitted waves, then the pick-up characteristics are well accordance with typical experiments quality and quantity.

  • High-Resolution Wafer Inspection Using the "in-lens SEM"

    Fumio MIZUNO  Satoru YAMADA  Tadashi OHTAKA  Nobuo TSUMAKI  Toshifumi KOIKE  

     
    PAPER-Particle/Defect Control and Analysis

      Vol:
    E79-C No:3
      Page(s):
    317-323

    A new electron-beam wafer inspection system has been developed. The system has a resolution of 5 nm or better, and is applicable to quarter-micron devices such as 256 Mbit DRAMs. The most remarkable feature of this system is that a specimen stage is built in the objective lens and allows a working distance (WD) of 0. "WD=0"minimizes the effect of lens aberrations, and maximizes the resolving power. Innovative designs to achieve WD=0 are as follows: (1)A large objective lens of 730-mm width 730-mm depth 620-mm height that serves as a specimen chamber, has been developed. (2)A hollow specimen stage made of non-magnetic materials has been developed.It allows the lower pole piece and magnetic coile of the objective lens inside it. (3)Acoustic motors made of non-magnetic materials are em-ployed for use in vacuum.

  • Effects of 50 to 200-keV Electrons by BEASTLI Method on Semiconductor Devices

    Fumio MIZUNO  Satoru YAMADA  Tsunao ONO  

     
    PAPER-Device Issues

      Vol:
    E79-C No:3
      Page(s):
    392-397

    We studied effects of 50-200-keV electrons on semiconductor devices using BEASTLI (backscattered electron assisting LSI inspection) method. When irradiating semiconduc-tor devices with such high-energy electrons, we have to note two phenomena. The first is surface charging and the second is device damage. In our study of surface charging, we found that a net positive charge was formed on the device surface. The positive surface charges do not cause serious influence for observation so that we can inspect wafers without problems. The positive surface charging may be brought about because most incident electrons penetrate the device layer and reach the conducting substrate of the semiconductor device. For the device damage, we studied MOS devices which were sensitive to electron-beam irradiation. By applying a 400- annealing to electron-beam irradiated MOS devices, we could restore the initial characteris-tics of MOS devices. However, in order to recover hot-carrier degradation due to neutral traps, we had to apply a 900- annealing to the electron-beam irradiated MOS devices. Thus, BEASTLI could be successfully used by providing an apporopri-ate annealing to the electron-beam irradiated MOS devices.

  • An Adaptive Coding-Based Selection Scheme for a Communication Aid

    Satoshi KOYAMA  

     
    LETTER

      Vol:
    E78-A No:11
      Page(s):
    1542-1544

    This paper discusses a coding-based selection approach to a communication aid for the severely motor disabled. Several approaches including row-column scanning are briefly described, then we propose a new selection scheme based on the theory of adaptive coding. They are compared each other with respect to average switch activations in generating some text samples.

  • An Efficient Encoding of DCT Blocks with Block-Adaptive Scanning

    Jong Hwa LEE  Su Won KANG  Kyeong Ho YANG  Choong Woong LEE  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1489-1494

    In a hybrid coder which employs motion compensation and discrete cosine transform (MC-DCT coder), up to 90% of bits are used to represent the quantized DCT blocks. So it is most important to represent them with as few bits as possible. In this paper, we propose an efficient method for encoding the quantized DCT blocks of motion compensated prediction (MCP) errors, which adaptively selects one of a few scanning patterns. The scanning pattern selection of an MCP error block is based on the motion compensated images which are always available at the decoder as well as at the encoder. No overhead information for the scanning patterns needs to be transmitted. Simulation results show that the average bit rate reduction amounts to 5%.

  • An Analysis of and a Method of Enhancing the Intensity of OBIRCH Signal for Defects Observation in VLSI Metal Interconnections

    Naoki KAWAMURA  Tomoaki SAKAI  Masakazu SHIMAYA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    579-584

    The origin of and a method of enhancing the Optical Beam Induced Resistance Change (OBIRCH) signal for defect observation in VLSI metal interconnections is discussed based on a numerical analysis of three-dimensional thermal conduction and experimental results. The numerical analysis shows that the OBIRCH signal originates from a slight increase in the resistance of the metal line caused by laser beam heating and that its effect is influenced by the temperature of the metal layer. Both simulations and experimental results suggest that cooling the sample is preferable to detect the OBIRCH signal. The decrease in the total resistance of the metal line without any change in the amount of the resistance increase under laser illumination is found to be the main cause of the OBIRCH signal enhancement under low temperature measurement.

  • Interconnection Architecture Based on Beam-Steering Devices

    Hideo ITOH  Seiji MUKAI  Hiroyoshi YAJIMA  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    15-22

    Beam-steering devices are attractive for spatial optical interconnections. Those devices are essential not only for fixed connecting routed optical interconnections, but for flexible connecting routed optical interconnections. The flexible connecting routed optical interconections are more powerful than the conventional fixed connecting routed ones. Structures and characteristics of beam-steering devices, a beam-scanning laser diode and a fringe-shifting laser diode, are reported for those interconnections. Using these lasers, the configurations of several optical interconnections, such as optical buses and optical data switching links as examples of fixed and flexible connecting routed optical interconnections are discussed.

  • Focused Ion Beam Applications to Failure Analysis of Si Device Chip

    Kiyoshi NIKAWA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    174-179

    New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.

  • An Implementation of the Hilbert Scanning Algorithm and Its Application to Data Compression

    Seiichiro KAMATA  Richard O. EASON  Eiji KAWAGUCHI  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    420-428

    The Hilbert curve is one of the simplest curves which pass through all points in a space. Many researchers have worked on this curve from the engineering point of view, such as for an expression of two-dimensional patterns, for data compression in an image or in color space, for pseudo color image displays, etc. A computation algorithm of this curve is usually based on a look-up table instead of a recursive algorithm. In such algorithm, a large memory is required for the path look-up table, and the memory size becomes proportional to the image size. In this paper, we present an implementation of a fast sequential algorithm that requires little memory for two and three dimensional Hilbert curves. Our method is based on some rules of quad-tree traversal in two dimensional space, and octtree traversal in three dimensional space. The two dimensional Hilbert curve is similar to the scanning of a DF (Depth First) expression, which is a quad-tree expression of an image. The important feature is that it scans continuously from one quadrant, which is obtained by quad tree splitting, to the next adjacent one in two dimensional space. From this point, if we consider run-lengths of black and white pixels during the scan, the run-lengths of the Hilbert scan tend to be longer than those of the raster scan and the DF expression scanning. We discuss the application to data compression using binary images and three dimensional data.

  • Precise Linewidth Measurement Using a Scanning Electron Probe

    Fumio MIZUNO  Satoru YAMADA  Akihiro MIURA  Kenji TAKAMOTO  Tadashi OHTAKA  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    600-606

    Practical linewidth measurement accuracy better than 0.02 µm 3 sigma that meets the production requirement for devices with sub-half micron features, was achieved in a field emission scanning electron-beam metrology system (Hitachi S-7000). In order to establish high accuracy linewidth measurement, it was found in the study that reduction of electron-beam diameter and precise control of operating conditions are significantly effective. For the purpose of reducing electron-beam diameter, a novel electron optical system was adopted to minimize the chromatic aberration which defines electron-beam profile. As a result the electron beam diameter was reduced from 20 nm to 16 nm. In order to reduce measurement uncertainties associated with actual operating conditions, a field emission electron gun geometry and an objective lens current monitor were investigated. Then the measurement uncertainties due to operating conditions was reduced from 0.016 µm to 0.004 µm.

61-79hit(79hit)