The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sector antenna(8hit)

1-8hit
  • Numerical Analysis of Monopole Multi-Sector Antenna with Dielectric Cylinder

    Yuto SUZUKI  Naoki HONMA  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:9
      Page(s):
    2991-2994

    This letter proposes a monopole multi-sector antenna with dielectric cylinder, and shows some results of simulations that examined the antenna characteristics. The dependency of radiation characteristics on relative permittivity εr shows the lens effect with increase of εr. Furthermore, the characteristics of the proposed antenna are improved by optimizing the termination conditions at the quiescent antennas. The backlobe level is lower than -10 dB. Also, the vertical HPBW and the conical HPBW are around 70.5° and 63.4°, respectively. The optimization improved the actual gain by 2 dB. It is found that the diameter of the proposed antenna is 1/3rd that of the conventional one.

  • 60-GHz-Band Switched-Beam Eight-Sector Antenna with SP8T Switch for 180 Azimuth Scan

    Amane MIURA  Masataka OHIRA  Shoichi KITAZAWA  Masazumi UEBA  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E93-B No:3
      Page(s):
    551-559

    This paper proposes a new switched-beam eight-sector antenna for multi-gigabit wireless LAN in the 60-GHz band. Our antenna system introduces access-point (AP) and user-terminal (UT) antennas having the same secθ pattern in the elevation plane so that the received signal power at the receiver is kept constant, independent of the position of the UT. For this system, an eight-sector antenna, a single-pole eight-throw (SP8T) switch, and a beam control unit are integrated as the switched-beam eight-sector antenna. The specifications of the antenna are wide bandwidth ( ≥3 GHz), high-gain ( ≥13 dBi at θ =66), and wide coverage area in both azimuth (0 ≤ φ ≤ 180) and elevation planes (0 ≤ θ ≤ 66). The antenna beam is steered within the specified response time (which is short) by the Media Access Control (MAC). In our antenna, both high gain for a wide elevation angle and wide bandwidth are obtained by using the proposed closely spaced waveguide slot array antenna, which is used as each sector of the eight-sector antenna. The SP8T switch with the beam control unit enables 180 beam scan in the azimuth plane. In a component evaluation, the eight-sector antenna achieves a 10-dB return loss bandwidth of 8 GHz with more than 40-dB port-to-port isolation. Radiation characteristics of the eight-sector antenna indicate that it covers 82% of the entire coverage area at the center frequency and that the coverage rate in the operating frequency band is from 78% to 88%. The performance of the SP8T switch and the beam control unit is verified by measuring the insertion loss at all eight ports and the switching response time. In the antenna system evaluation, measurement by using two prototype antennas as the AP and the UT antennas in the usage condition indicates that the measured received signal power meets the specified constant power for the specified wide elevation angle range, independent of the position of the UT. These experimental results verify the effectiveness of our proposed antenna for multi-gigabit WLAN.

  • Link Correlation Based Transmit Sector Antenna Selection for Alamouti Coded OFDM

    Chang-Jun AHN  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    816-823

    In MIMO systems, the deployment of a multiple antenna technique can enhance the system performance. However, since the cost of RF transmitters is much higher than that of antennas, there is growing interest in techniques that use a larger number of antennas than the number of RF transmitters. These methods rely on selecting the optimal transmitter antennas and connecting them to the respective. In this case, feedback information (FBI) is required to select the optimal transmitter antenna elements. Since FBI is control overhead, the rate of the feedback is limited. This motivates the study of limited feedback techniques where only partial or quantized information from the receiver is conveyed back to the transmitter. However, in MIMO/OFDM systems, it is difficult to develop an effective FBI quantization method for choosing the space-time, space-frequency, or space-time-frequency processing due to the numerous subchannels. Moreover, MIMO/OFDM systems require antenna separation of 5 10 wavelengths to keep the correlation coefficient below 0.7 to achieve a diversity gain. In this case, the base station requires a large space to set up multiple antennas. To reduce these problems, in this paper, we propose the link correlation based transmit sector antenna selection for Alamouti coded OFDM without FBI.

  • Vector Evaluated GA-ICT for Novel Optimum Design Method of Arbitrarily Arranged Wire Grid Model Antenna and Application of GA-ICT to Sector-Antenna Downsizing Problem

    Tamami MARUYAMA  Toshikazu HORI  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:11
      Page(s):
    3014-3022

    This paper proposes the Vector Evaluated GA-ICT (VEGA-ICT), a novel design method that employs the Genetic Algorithm (GA) to obtain the optimum antenna design. GA-ICT incorporates an arbitrary wire-grid model antenna to derive the optimum solution without any basic structure or limitation on the number of elements by merely optimizing an objective function. GA-ICT comprises the GA and an analysis method, the Improved Circuit Theory (ICT), with the following characteristics. (1) To achieve optimization of an arbitrary wire-grid model antenna without a basic antenna structure, the unknowns of the ICT are directly assigned to variables of the GA in the GA-ICT. (2) To achieve a variable number of elements, duplicate elements generated by using the same feasible region are deleted in the ICT. (3) To satisfy all complex design conditions, the GA-ICT generates an objective function using a weighting function generated based on electrical characteristics, antenna configuration, and size. (4) To overcome the difficulty of convergence caused by the nonlinearity of each term in the objective function, GA-ICT adopts a vector evaluation method. In this paper, the novel GA-ICT method is applied to downsize sector antennas. The calculation region in GA-ICT is reduced by adopting cylindrical coordinates and a periodic imaging structure. The GA-ICT achieves a 30% reduction in size compared to the previously reported small sector antenna, MS-MPYA, while retaining almost the same characteristics.

  • Cylindrical Multi-Sector Antenna with Self-Selecting Switching Circuit

    Tomohiro SEKI  Toshikazu HORI  

     
    PAPER-Millimeter-Wave Antennas

      Vol:
    E84-B No:9
      Page(s):
    2407-2412

    Sector antennas provide many advantages such as when combined with a narrow beam antenna, they become particularly effective in achieving high-speed wireless communication systems and they aid in simplifying the structure. These antennas have a drawback in that as the number of sectors increases, the antenna size rapidly increases. Therefore, downsizing the sector antenna has become a major research topic. A promising candidate is utilizing a phased-array type antenna; however, this antenna requires a phase-shifter circuit for beam scanning and generally the feeding circuit for this type of antenna is very complicated. To address these issues, we propose a self-selecting feeding circuit that is controlled by the same control circuit and is operated similarly to the conventional single port n-th throw (SPNT) switch. We fabricated a small cylindrical 12-sector antenna at 19 GHz employing the proposed feeding circuit for verification purposes. Furthermore, this paper clarifies the design method of this feeding circuit where the antenna diameter is 71 mm, and the results clearly show that the gain is more than 12 dBi.

  • Spread Spectrum Inter-Vehicle Communication Using Sector Antennas

    Lachlan B. MICHAEL  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2627-2633

    In inter-vehicle communication (IVC) expectation for spread spectrum techniques is high. However, in a decentralized network environment, power control is difficult and until now perfect power control has been assumed. In this paper the use of sector antennas are proposed as a solution to the problems of power control in inter-vehicle communication. Results are shown for an IVC protocol in both no power control and imperfect power control environments in a realistic fading channel. Omni-directional, uniform sector antennas and non-uniform sector antennas are examined by computer simulation. Non-uniform sector antennas are shown to be the best solution and to have high packet reception rates even for no power control environments.

  • A Four-Sector Shaped-Beam Antenna for 60-GHz Wireless LANs

    Yasushi MURAKAMI  Hisao IWASAKI  Tooru KIJIMA  Akihito KATO  Takeshi MANABE  Toshio IHARA  Masayuki FUJISE  

     
    PAPER-Systems

      Vol:
    E82-C No:7
      Page(s):
    1293-1300

    This paper presents a novel four-sector shaped-beam antenna suitable for base station antennas in 60-GHz wireless local area networks (LANs). The antenna has a plateau configuration, whose four side walls have four linearly arranged microstrip antennas. Each trapezoidal facet excites a shaped beam in the elevation plane in order to meet link-budget requirement between base station and remote terminal, taking account of directional patters of remote terminal antennas. Low-loss curved microstrip-line is applied to connect the three-dimensional antennas with active circuits mounted on a flat carrier plate. This antenna has been adopted as the base station antenna in 60-GHz wireless LANs. The first-stage transmission experiment confirms the usefulness of shaped-beam antennas in the 60-GHz band.

  • A Planar Sector Antenna for Indoor High-Speed Wireless Communication Systems

    Kazuhiro UEHARA  Tomohiro SEKI  Kenichi KAGOSHIMA  

     
    PAPER

      Vol:
    E79-B No:12
      Page(s):
    1773-1777

    For quasi millimeter-wave and millimeter-wave high-speed wireless communications over wireless LANs and wireless ATMs, narrow beam antennas have been shown to provide high transmission quality by suppressing the troublesome multipath effect. However, the diameter of sector antennas needed to create the narrow beams rapidly increases with the sector number. In addition, the cylindrical shape of typical sector antennas does not suit portable terminals. This paper shows a methodology for designing planar sector antennas that overcomes these problems. The proposed antenna uses two kinds of beams and the antenna gains are equalized in all sectors. The antenna is developed as a 4-beam subarray fed by a planar Butler matrix circuit. The design method of the subarray and an evaluation of its characteristics in the 20 GHz band are discussed.