The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] signal delay(3hit)

1-3hit
  • A Method for Minimizing Clock Skew Fluctuations Caused by Interconnect Process Variations

    Susumu KOBAYASHI  Fumihiro MINAMI  

     
    PAPER

      Vol:
    E96-D No:9
      Page(s):
    1980-1985

    As the LSI process technology advances and the gate size becomes smaller, the signal delay on interconnect becomes a significant factor in the signal path delay. Also, as the size of interconnect structure becomes smaller, the interconnect process variations have become one of the dominant factors which influence the signal delay and thus clock skew. Therefore, controlling the influence of interconnect process variations on clock skew is a crucial issue in the advanced process technologies. In this paper, we propose a method for minimizing clock skew fluctuations caused by interconnect process variations. The proposed method identifies the suitable balance of clock buffer size and wire length in order to minimize the clock skew fluctuations caused by the interconnect process variations. Experimental results on test circuits of 28nm process technology show that the proposed method reduces the clock skew fluctuations by 30-92% compared to the conventional method.

  • Non-uniform Multi-Layer IC Interconnect Transmission Line Characterization for Fast Signal Transient Simulation of High-Speed/High-Density VLSI Circuits

    Woojin JIN  Hanjong YOO  Yungseon EO  

     
    PAPER

      Vol:
    E82-C No:6
      Page(s):
    955-966

    A new IC interconnect transmission line parameter determination methodology and a novel fast simulation technique for non-uniform transmission lines are presented and verified. The capacitance parameter is a strong function of a shielding effect between the layers, while silicon substrate has a substantial effect on inductance parameter. Thus, they are taken into account to determine the parameters. Then the virtual straight-line-based per unit length parameters are determined in order to perform the fast transient simulation of the non-uniform transmission lines. It was shown that not only the inductance effect due to a silicon substrate but also the shielding effect between the layers are too significant to be neglected. Further, a model order reduction technique is integrated into Berkeley SPICE in order to demonstrate that the virtual straight-line-based per-unit-length parameters can be efficiently employed for the fast transient response simulation of the complicated multi-layer interconnect structures. Since the methodology is very efficient as well as accurate, it can be usefully employed for IC CAD tools of high-performance VLSI circuit design.

  • Monte Carlo Analysis of Velocity Overshoot Effects in Bipolar Devices with and without an i-Layer

    Yoshiroh TSUBOI  Claudio FIFGNA  Enrico SANGIORGI  Bruno RICCÒ  Tetsunori WADA  Yasuhiro KATSUMATA  Hiroshi IWAI  

     
    PAPER-Device Simulation

      Vol:
    E77-C No:2
      Page(s):
    174-178

    We investigated the impact of velocity overshoot effect on collector signal delay of bipolar devices by using Monte Carlo simulation method. We found that insertion of an i-layer (lightly doped, intrinsic layer) between base and collector can increase the delay, but the strength of this effect is a function of the i-layer thickness. When the i-layer becomes thinner, the problem of increasing delay seems to disappear. This recovery of delay is realised with a mechanism which is completely different from that in drift-diffusion model.