1-3hit |
Koichi MAEZAWA Umer FAROOQ Masayuki MORI
A novel displacement sensor was proposed based on a frequency delta-sigma modulator (FDSM) employing a microwave oscillator. To demonstrate basic operation, we fabricated a stylus surface profiler using a cylindrical cavity resonator, where one end of the cavity is replaced by a thin metal diaphragm with a stylus probe tip. Good surface profile was successfully obtained with this device. A 10 nm depth trench was clearly observed together with a 10 µm trench in a single scan without gain control. This result clearly demonstrates an extremely wide dynamic range of the FDSM displacement sensors.
Takafumi HIGASHI Hideaki KANAI
In this paper, we propose an interactive system for controlling the pressure while cutting paper with a knife. The purpose is to improve the cutting skill of novices learning the art of paper-cutting. Our system supports skill improvement for novices by measuring and evaluating their cutting pressure in real-time. In this study, we use a knife with a blade attached to a stylus with a pressure sensor, which can measure the pressure, coordinates, and cutting time. We have developed a similar support system using a stylus and a tablet device. This system allows the user to experience the pressure of experts through tracing. Paper-cutting is created by cutting paper with a knife. The practice system in this paper provides practice in an environment more akin to the production of paper cutting. In the first experiment, we observed differences in cutting ability by comparing cutting pressures between novices and experts. As a result, we confirmed that novices cut paper at a higher pressure than experts. We developed a practice system that guides the novices on controlling the pressure by providing information on the cutting pressure values of experts. This system shows the difference in pressure between novices and experts using a synchronous display of color and sound. Using these functions, novices learn to adjust their cutting pressure according to that of experts. Determining the right cutting pressure is a critical skill in the art of paper-cutting, and we aim to improve the same with our system. In the second experiment, we tested the effect of the practice system on the knife device. We compared the changes in cutting pressure with and without our system, the practice methods used in the workshop, and the previously developed stylus-based support system. As a result, we confirmed that practicing with the knife device had a better effect on the novice's skill in controlling cutting pressure than other practice methods.
Hiroki IMAMURA Asami HISAMATSU Makoto FUJIMURA Hideo KURODA
We propose an automatic generative method for stylus style CG as automatic generative method for non-photorealistic CG.