The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] system(3186hit)

261-280hit(3186hit)

  • Interference Suppression of Partially Overlapped Signals Using GSVD and Orthogonal Projection

    Liqing SHAN  Shexiang MA  Xin MENG  Long ZHOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1055-1060

    In order to solve the problem in Automatic Identification System (AIS) that the signal in the target slot cannot be correctly received due to partial overlap of signals in adjacent time slots, the paper introduces a new criterion: maximum expected signal power (MESP) and proposes a novel beamforming algorithm based on generalized singular value decomposition (GSVD) and orthogonal projection. The algorithm employs GSVD to estimate the signal subspace, and adopts orthogonal projection to project the received signal onto the orthogonal subspace of the non-target signal. Then, beamforming technique is used to maximize the output power of the target signal on the basis of MESP. Theoretical analysis and simulation results show the effectiveness of the proposed algorithm.

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • Wide-Sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks

    Wojciech KABACIŃSKI  Mustafa ABDULSAHIB  Marek MICHALSKI  

     
    PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    978-991

    This paper considers wide-sense nonblocking operation of the Wavelength-Space-Wavelength elastic optical switch. Six control algorithms, based on functional spectrum decomposition in interstage links and functional decomposition of center stage switches, are proposed for two switching fabric architectures. For these algorithms we derived wide-sense nonblocking conditions and compared them with strict-sense nonblocking ones. The results show that the proposed algorithm reduces the required number of frequency slot units (FSUs) or center stage switches, depending on the switching fabric architecture. Savings occur even when connections use small number of frequency slot units.

  • Learning in Two-Player Matrix Games by Policy Gradient Lagging Anchor

    Shiyao DING  Toshimitsu USHIO  

     
    LETTER-Mathematical Systems Science

      Vol:
    E102-A No:4
      Page(s):
    708-711

    It is known that policy gradient algorithm can not guarantee the convergence to a Nash equilibrium in mixed policies when it is applied in matrix games. To overcome this problem, we propose a novel multi-agent reinforcement learning (MARL) algorithm called a policy gradient lagging anchor (PGLA) algorithm. And we prove that the agents' policies can converge to a Nash equilibrium in mixed policies by using the PGLA algorithm in two-player two-action matrix games. By simulation, we confirm the convergence and also show that the PGLA algorithm has a better convergence than the LR-I lagging anchor algorithm.

  • A Note on Two Constructions of Zero-Difference Balanced Functions

    Zongxiang YI  Yuyin YU  Chunming TANG  Yanbin ZHENG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:4
      Page(s):
    680-684

    Notes on two constructions of zero-difference balanced (ZDB) functions are made in this letter. Then ZDB functions over Ze×∏ki=0 Fqi are obtained. And it shows that all the known ZDB functions using cyclotomic cosets over Zn are special cases of a generic construction. Moreover, applications of these ZDB functions are presented.

  • A New Memristive Chaotic System and the Generated Random Sequence

    Bo WANG  Yuanzheng LIU  Xiaohua ZHANG  Jun CHENG  

     
    LETTER-Nonlinear Problems

      Vol:
    E102-A No:4
      Page(s):
    665-667

    This paper concerned the research on a memristive chaotic system and the generated random sequence; by constructing a piecewise-linear memristor model, a kind of chaotic system is constructed, and corresponding numerical simulation and dynamical analysis are carried out to show the dynamics of the new memristive chaotic system. Finally the proposed memristive chaotic system is used to generate random sequence for the possible application in encryption field.

  • VHDL vs. SystemC: Design of Highly Parameterizable Artificial Neural Networks

    David ALEDO  Benjamin CARRION SCHAFER  Félix MORENO  

     
    PAPER-Computer System

      Pubricized:
    2018/11/29
      Vol:
    E102-D No:3
      Page(s):
    512-521

    This paper describes the advantages and disadvantages observed when describing complex parameterizable Artificial Neural Networks (ANNs) at the behavioral level using SystemC and at the Register Transfer Level (RTL) using VHDL. ANNs are complex to parameterize because they have a configurable number of layers, and each one of them has a unique configuration. This kind of structure makes ANNs, a priori, challenging to parameterize using Hardware Description Languages (HDL). Thus, it seems intuitively that ANNs would benefit from the raise in level of abstraction from RTL to behavioral level. This paper presents the results of implementing an ANN using both levels of abstractions. Results surprisingly show that VHDL leads to better results and allows a much higher degree of parameterization than SystemC. The implementation of these parameterizable ANNs are made open source and are freely available online. Finally, at the end of the paper we make some recommendation for future HLS tools to improve their parameterization capabilities.

  • Scalable State Space Search with Structural-Bottleneck Heuristics for Declarative IT System Update Automation Open Access

    Takuya KUWAHARA  Takayuki KURODA  Manabu NAKANOYA  Yutaka YAKUWA  Hideyuki SHIMONISHI  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    439-451

    As IT systems, including network systems using SDN/NFV technologies, become large-scaled and complicated, the cost of system management also increases rapidly. Network operators have to maintain their workflow in constructing and consistently updating such complex systems, and thus these management tasks in generating system update plan are desired to be automated. Declarative system update with state space search is a promising approach to enable this automation, however, the current methods is not enough scalable to practical systems. In this paper, we propose a novel heuristic approach to greatly reduce computation time to solve system update procedure for practical systems. Our heuristics accounts for structural bottleneck of the system update and advance search to resolve bottlenecks of current system states. This paper includes the following contributions: (1) formal definition of a novel heuristic function specialized to system update for A* search algorithm, (2) proofs that our heuristic function is consistent, i.e., A* algorithm with our heuristics returns a correct optimal solution and can omit repeatedly expansion of nodes in search spaces, and (3) results of performance evaluation of our heuristics. We evaluate the proposed algorithm in two cases; upgrading running hypervisor and rolling update of running VMs. The results show that computation time to solve system update plan for a system with 100 VMs does not exceed several minutes, whereas the conventional algorithm is only applicable for a very small system.

  • Partial Gathering of Mobile Agents in Arbitrary Networks

    Masahiro SHIBATA  Daisuke NAKAMURA  Fukuhito OOSHITA  Hirotsugu KAKUGAWA  Toshimitsu MASUZAWA  

     
    PAPER

      Pubricized:
    2018/11/01
      Vol:
    E102-D No:3
      Page(s):
    444-453

    In this paper, we consider the partial gathering problem of mobile agents in arbitrary networks. The partial gathering problem is a generalization of the (well-investigated) total gathering problem, which requires that all the agents meet at the same node. The partial gathering problem requires, for a given positive integer g, that each agent should move to a node and terminate so that at least g agents should meet at each of the nodes they terminate at. The requirement for the partial gathering problem is no stronger than that for the total gathering problem, and thus, we clarify the difference on the move complexity between them. First, we show that agents require Ω(gn+m) total moves to solve the partial gathering problem, where n is the number of nodes and m is the number of communication links. Next, we propose a deterministic algorithm to solve the partial gathering problem in O(gn+m) total moves, which is asymptotically optimal in terms of total moves. Note that, it is known that agents require Ω(kn+m) total moves to solve the total gathering problem in arbitrary networks, where k is the number of agents. Thus, our result shows that the partial gathering problem is solvable with strictly fewer total moves compared to the total gathering problem in arbitrary networks.

  • Resilient Edge: A Scalable, Robust Network Function Backend

    Yutaro HAYAKAWA  Kenichi YASUKATA  Jin NAKAZAWA  Michio HONDA  

     
    PAPER-Information Network

      Pubricized:
    2018/12/04
      Vol:
    E102-D No:3
      Page(s):
    550-558

    Increasing hardware resources, such as multi-core and multi-socket CPUs, memory capacity and high-speed NICs, impose significant challenges on Network Function Virtualization (NFV) backends. They increase the potential numbers of per-server NFs or tenants, which requires a packet switching architecture that is not only scalable to large number of virtual ports, but also robust to attacks on the data plane. This is a real problem; a recent study has reported that Open vSwitch, a widely used software switch, had a buffer-overflow bug in its data plane that results the entire SDN domain to be hijacked by worms propagated in the network. In order to address this problem, we propose REdge. It scales to thousands of virtual ports or NFs (as opposed to hundreds in the current state-of-the art), and protect modular, flexible packet switching logic against various bugs, such as buffer overflow and other unexpected operations using static program checking. When 2048 NFs are active and packets are distributed to them based on the MAC or IP addresses, REdge achieves 3.16 Mpps or higher packet forwarding rates for 60 byte packets and achieves the wire rate for 1500 byte packets in the 25 Gbps link.

  • Distributed Constrained Convex Optimization with Accumulated Subgradient Information over Undirected Switching Networks

    Yuichi KAJIYAMA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    343-350

    This paper proposes a consensus-based subgradient method under a common constraint set with switching undirected graphs. In the proposed method, each agent has a state and an auxiliary variable as the estimates of an optimal solution and accumulated information of past gradients of neighbor agents. We show that the states of all agents asymptotically converge to one of the optimal solutions of the convex optimization problem. The simulation results show that the proposed consensus-based algorithm with accumulated subgradient information achieves faster convergence than the standard subgradient algorithm.

  • File Systems are Hard to Test — Learning from Xfstests

    Naohiro AOTA  Kenji KONO  

     
    PAPER-Software System

      Pubricized:
    2018/11/07
      Vol:
    E102-D No:2
      Page(s):
    269-279

    Modern file systems, such as ext4, btrfs, and XFS, are evolving and enable the introduction of new features to meet ever-changing demands and improve reliability. File system developers are struggling to eliminate all software bugs, but the operating system community points out that file systems are a hotbed of critical software bugs. This paper analyzes the code coverage of xfstests, a widely used suite of file system tests, on three major file systems (ext4, btrfs, and XFS). The coverage is 72.34%, and the uncovered code runs into 23,232 lines of code. To understand why the code coverage is low, the uncovered code is manually examined line by line. We identified three major causes, peculiar to file systems, that hinder higher coverage. First, covering all the features is difficult because each file system provides a wide variety of file-system specific features, and some features can be tested only on special storage devices. Second, covering all the execution paths is difficult because they depend on file system configurations and internal on-disk states. Finally, the code for maintaining backward-compatibility is executed only when a file system encounters old formats. Our findings will help file system developers improve the coverage of test suites and provide insights into fostering the development of new methodologies for testing file systems.

  • Comprehensive Damage Assessment of Cyberattacks on Defense Mission Systems

    Seung Keun YOO  Doo-Kwon BAIK  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/11/06
      Vol:
    E102-D No:2
      Page(s):
    402-405

    This letter proposes a comprehensive assessment of the mission-level damage caused by cyberattacks on an entire defense mission system. We experimentally prove that our method produces swift and accurate assessment results and that it can be applied to actual defense applications. This study contributes to the enhancement of cyber damage assessment with a faster and more accurate method.

  • Maximally Permissive Nonblocking Supervisors for Similarity Control of Nondeterministic Discrete Event Systems under Event and State Observations

    Jinglun LI  Shigemasa TAKAI  

     
    LETTER

      Vol:
    E102-A No:2
      Page(s):
    399-403

    We consider a similarity control problem for discrete event systems modeled as nondeterministic automata. A nonblocking supervisor was synthesized in the previous work under the assumption that the event occurrence and the current state of the plant are observable. In this letter, we prove that the synthesized supervisor is a maximally permissive nonblocking one.

  • Predictive Pinning Control with Communication Delays for Consensus of Multi-Agent Systems

    Koichi KOBAYASHI  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    359-364

    In this paper, based on the policy of model predictive control, a new method of predictive pinning control is proposed for the consensus problem of multi-agent systems. Pinning control is a method that the external control input is added to some agents (pinning nodes), e.g., leaders. By the external control input, consensus to a certain target value (not the average of the initial states) and faster consensus are achieved. In the proposed method, the external control input is calculated by the controller node connected to only pinning nodes. Since the states of all agents are required in calculation of the external control input, communication delays must be considered. The proposed algorithm includes not only calculation of the external control input but also delay compensation. The effectiveness of the proposed method is presented by a numerical example.

  • Development of Acoustic Nonverbal Information Estimation System for Unconstrained Long-Term Monitoring of Daily Office Activity

    Hitomi YOKOYAMA  Masano NAKAYAMA  Hiroaki MURATA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    331-345

    Aimed at long-term monitoring of daily office conversations without recording the conversational content, a system is presented for estimating acoustic nonverbal information such as utterance duration, utterance frequency, and turn-taking. The system combines a sound localization technique based on the sound energy distribution with 16 beam-forming microphone-array modules mounted in the ceiling for reducing the influence of multiple sound reflection. Furthermore, human detection using a wide field of view camera is integrated to the system for more robust speaker estimation. The system estimates the speaker for each utterance and calculates nonverbal information based on it. An evaluation analyzing data collected over ten 12-hour workdays in an office with three assigned workers showed that the system had 72% speech segmentation detection accuracy and 86% speaker identification accuracy when utterances were correctly detected. Even with false voice detection and incorrect speaker identification and even in cases where the participants frequently made noise or where seven participants had gathered together for a discussion, the order of the amount of calculated acoustic nonverbal information uttered by the participants coincided with that based on human-coded acoustic nonverbal information. Continuous analysis of communication dynamics such as dominance and conversation participation roles through nonverbal information will reveal the dynamics of a group. The main contribution of this study is to demonstrate the feasibility of unconstrained long-term monitoring of daily office activity through acoustic nonverbal information.

  • Multi-Context Automated Lemma Generation for Term Rewriting Induction with Divergence Detection

    Chengcheng JI  Masahito KURIHARA  Haruhiko SATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    223-238

    We present an automated lemma generation method for equational, inductive theorem proving based on the term rewriting induction of Reddy and Aoto as well as the divergence critic framework of Walsh. The method effectively works by using the divergence-detection technique to locate differences in diverging sequences, and generates potential lemmas automatically by analyzing these differences. We have incorporated this method in the multi-context inductive theorem prover of Sato and Kurihara to overcome the strategic problems resulting from the unsoundness of the method. The experimental results show that our method is effective especially for some problems diverging with complex differences (i.e., parallel and nested differences).

  • Real Challenge of Mobile Networks Toward 5G — An Expectation for Antennas & Propagation — Open Access

    Fumio WATANABE  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    182-188

    The next generation mobile system “5G” are under research, development and standardization for a service start of around year 2020. It is likely to use frequency bands higher than existing bands to have wider bandwidth for high throughput services. This paper reviews technical issues on higher frequency bands applying mobile systems including system trials and use case trials. It identifies expectations for antennas & propagation studies toward 5G era.

  • Construction of Asymmetric Gaussian Integer ZCZ Sequence Sets

    Xiaoyu CHEN  Heru SU  Yubo LI  Xiuping PENG  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:2
      Page(s):
    471-475

    In this letter, a construction of asymmetric Gaussian integer zero correlation zone (ZCZ) sequence sets is presented based on interleaving and filtering. The proposed approach can provide optimal or almost optimal single Gaussian integer ZCZ sequence sets. In addition, arbitrary two sequences from different sets have inter-set zero cross-correlation zone (ZCCZ). The resultant sequence sets can be used in the multi-cell QS-CDMA system to reduce the inter-cell interference and increase the transmission data.

  • Distributed Proximal Minimization Algorithm for Constrained Convex Optimization over Strongly Connected Networks

    Naoki HAYASHI  Masaaki NAGAHARA  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    351-358

    This paper proposes a novel distributed proximal minimization algorithm for constrained optimization problems over fixed strongly connected networks. At each iteration, each agent updates its own state by evaluating a proximal operator of its objective function under a constraint set and compensating the unbalancing due to unidirectional communications. We show that the states of all agents asymptotically converge to one of the optimal solutions. Numerical results are shown to confirm the validity of the proposed method.

261-280hit(3186hit)