The search functionality is under construction.

Keyword Search Result

[Keyword] system(3179hit)

121-140hit(3179hit)

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

  • Optimization and Combination of Scientific and Technological Resource Services Based on Multi-Community Collaborative Search

    Yida HONG  Yanlei YIN  Cheng GUO  Xiaobao LIU  

     
    PAPER

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1313-1320

    Many scientific and technological resources (STR) cannot meet the needs of real demand-based industrial services. To address this issue, the characteristics of scientific and technological resource services (STRS) are analyzed, and a method of the optimal combination of demand-based STR based on multi-community collaborative search is then put forward. An optimal combined evaluative system that includes various indexes, namely response time, innovation, composability, and correlation, is developed for multi-services of STR, and a hybrid optimal combined model for STR is constructed. An evaluative algorithm of multi-community collaborative search is used to study the interactions between general communities and model communities, thereby improving the adaptive ability of the algorithm to random dynamic resource services. The average convergence value CMCCSA=0.00274 is obtained by the convergence measurement function, which exceeds other comparison algorithms. The findings of this study indicate that the proposed methods can preferably reach the maximum efficiency of demand-based STR, and new ideas and methods for implementing demand-based real industrial services for STR are provided.

  • Remote Dynamic Reconfiguration of a Multi-FPGA System FiC (Flow-in-Cloud)

    Kazuei HIRONAKA  Kensuke IIZUKA  Miho YAMAKURA  Akram BEN AHMED  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2021/05/12
      Vol:
    E104-D No:8
      Page(s):
    1321-1331

    Multi-FPGA systems have been receiving a lot of attention as a low cost and energy efficient system for Multi-access Edge Computing (MEC). For such purpose, a bare-metal multi-FPGA system called FiC (Flow-in-Cloud) is under development. In this paper, we introduce the FiC multi FPGA cluster which is applied partial reconfiguration (PR) FPGA design flow to support online user defined accelerator replacement while executing FPGA interconnection network and its low-level multiple FPGA management software called remote PR manager. With the remote PR manager, the user can define the FiC FPGA cluster setup by JSON and control the cluster from user application with the cooperation of simple cluster management tool / library called ficmgr on the client host and REST API service provider called ficwww on Raspberry Pi 3 (RPi3) on each node. According to the evaluation results with a prototype FiC FPGA cluster system with 12 nodes, using with online application replacement by PR and on-the-fly FPGA bitstream compression, the time for FPGA bitstream distribution was reduced to 1/17 and the total cluster setup time was reduced by 21∼57% than compared to cluster setup with full configuration FPGA bitstream.

  • Logarithmic Regret for Distributed Online Subgradient Method over Unbalanced Directed Networks

    Makoto YAMASHITA  Naoki HAYASHI  Takeshi HATANAKA  Shigemasa TAKAI  

     
    PAPER-Systems and Control

      Pubricized:
    2021/02/04
      Vol:
    E104-A No:8
      Page(s):
    1019-1026

    This paper investigates a constrained distributed online optimization problem over strongly connected communication networks, where a local cost function of each agent varies in time due to environmental factors. We propose a distributed online projected subgradient method over unbalanced directed networks. The performance of the proposed method is evaluated by a regret which is defined by the error between the cumulative cost over time and the cost of the optimal strategy in hindsight. We show that a logarithmic regret bound can be achieved for strongly convex cost functions. We also demonstrate the validity of the proposed method through a numerical example on distributed estimation over a diffusion field.

  • Performance Evaluation of Online Machine Learning Models Based on Cyclic Dynamic and Feature-Adaptive Time Series

    Ahmed Salih AL-KHALEEFA  Rosilah HASSAN  Mohd Riduan AHMAD  Faizan QAMAR  Zheng WEN  Azana Hafizah MOHD AMAN  Keping YU  

     
    PAPER

      Pubricized:
    2021/05/14
      Vol:
    E104-D No:8
      Page(s):
    1172-1184

    Machine learning is becoming an attractive topic for researchers and industrial firms in the area of computational intelligence because of its proven effectiveness and performance in resolving real-world problems. However, some challenges such as precise search, intelligent discovery and intelligent learning need to be addressed and solved. One most important challenge is the non-steady performance of various machine learning models during online learning and operation. Online learning is the ability of a machine-learning model to modernize information without retraining the scheme when new information is available. To address this challenge, we evaluate and analyze four widely used online machine learning models: Online Sequential Extreme Learning Machine (OSELM), Feature Adaptive OSELM (FA-OSELM), Knowledge Preserving OSELM (KP-OSELM), and Infinite Term Memory OSELM (ITM-OSELM). Specifically, we provide a testbed for the models by building a framework and configuring various evaluation scenarios given different factors in the topological and mathematical aspects of the models. Furthermore, we generate different characteristics of the time series to be learned. Results prove the real impact of the tested parameters and scenarios on the models. In terms of accuracy, KP-OSELM and ITM-OSELM are superior to OSELM and FA-OSELM. With regard to time efficiency related to the percentage of decreases in active features, ITM-OSELM is superior to KP-OSELM.

  • Matrix Factorization Based Recommendation Algorithm for Sharing Patent Resource

    Xueqing ZHANG  Xiaoxia LIU  Jun GUO  Wenlei BAI  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1250-1257

    As scientific and technological resources are experiencing information overload, it is quite expensive to find resources that users are interested in exactly. The personalized recommendation system is a good candidate to solve this problem, but data sparseness and the cold starting problem still prevent the application of the recommendation system. Sparse data affects the quality of the similarity measurement and consequently the quality of the recommender system. In this paper, we propose a matrix factorization recommendation algorithm based on similarity calculation(SCMF), which introduces potential similarity relationships to solve the problem of data sparseness. A penalty factor is adopted in the latent item similarity matrix calculation to capture more real relationships furthermore. We compared our approach with other 6 recommendation algorithms and conducted experiments on 5 public data sets. According to the experimental results, the recommendation precision can improve by 2% to 9% versus the traditional best algorithm. As for sparse data sets, the prediction accuracy can also improve by 0.17% to 18%. Besides, our approach was applied to patent resource exploitation provided by the wanfang patents retrieval system. Experimental results show that our method performs better than commonly used algorithms, especially under the cold starting condition.

  • Collaborative Filtering Auto-Encoders for Technical Patent Recommending

    Wenlei BAI  Jun GUO  Xueqing ZHANG  Baoying LIU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1258-1265

    To find the exact items from the massive patent resources for users is a matter of great urgency. Although the recommender systems have shot this problem to a certain extent, there are still some challenging problems, such as tracking user interests and improving the recommendation quality when the rating matrix is extremely sparse. In this paper, we propose a novel method called Collaborative Filtering Auto-Encoder for the top-N recommendation. This method employs Auto-Encoders to extract the item's features, converts a high-dimensional sparse vector into a low-dimensional dense vector, and then uses the dense vector for similarity calculation. At the same time, to make the recommendation list closer to the user's recent interests, we divide the recommendation weight into time-based and recent similarity-based weights. In fact, the proposed method is an improved, item-based collaborative filtering model with more flexible components. Experimental results show that the method consistently outperforms state-of-the-art top-N recommendation methods by a significant margin on standard evaluation metrics.

  • Alleviating File System Journaling Problem in Containers for DBMS Consolidation

    Asraa ABDULRAZAK ALI MARDAN  Kenji KONO  

     
    PAPER-Software System

      Pubricized:
    2021/04/01
      Vol:
    E104-D No:7
      Page(s):
    931-940

    Containers offer a lightweight alternative over virtual machines and become a preferable choice for application consolidation in the clouds. However, the sharing of kernel components can violate the I/O performance and isolation in containers. It is widely recognized that file system journaling has terrible performance side effects in containers, especially when consolidating database management systems (DBMSs). The sharing of journaling modules among containers causes performance dependency among them. This dependency violates resource consumption enforced by the resource controller, and degrades I/O performance due to the contention of the journaling module. The operating system developers have been working on novel designs of file systems or new journaling mechanisms to solve the journaling problems. This paper shows that it is possible to overcome journaling problems without re-designing file systems or implementing a new journaling method. A careful configuration of containers in existing file systems can gracefully solve the problems. Our recommended configuration consists of 1) per-container journaling by presenting each container with a virtual block device to have its own journaling module, and 2) accounting journaling I/Os separately for each container. Our experimental results show that our configuration resolves journaling-related problems, improves MySQL performance by 3.4x, and achieves reasonable performance isolation among containers.

  • An Intent-Based System Configuration Design for IT/NW Services with Functional and Quantitative Constraints Open Access

    Takuya KUWAHARA  Takayuki KURODA  Takao OSAKI  Kozo SATODA  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    791-804

    Network service providers need to appropriately design systems and carefully configuring the settings and parameters to ensure that the systems keep running consistently and deliver the desired services. This can be a heavy and error-prone task. Intent-based system design methods have been developed to help with such tasks. These methods receive service-level requirements and generate service configurations to fulfill the given requirements. One such method is search-based system design, which can flexibly generate systems of various architectures. However, it has difficulty dealing with constraints on the quantitative parameters of systems, e.g., disk volume, RAM size, and QoS. To deal with practical cases, intent-based system design engines need to be able to handle quantitative parameters and constraints. In this work, we propose a new intent-based system design method based on search-based design that augments search states with quantitative constraints. Our method can generate a system that meets both functional and quantitative service requirements by combining a search-based design method with constraint checking. Experimental results show that our method can automatically generate a system that fulfills all given requirements within a reasonable computation time.

  • Cyclic LRCs with Availability from Linearized Polynomials

    Pan TAN  Zhengchun ZHOU   Haode YAN  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/01/18
      Vol:
    E104-A No:7
      Page(s):
    991-995

    Locally repairable codes (LRCs) with availability have received considerable attention in recent years since they are able to solve many problems in distributed storage systems such as repairing multiple node failures and managing hot data. Constructing LRCs with locality r and availability t (also called (r, t)-LRCs) with new parameters becomes an interesting research subject in coding theory. The objective of this paper is to propose two generic constructions of cyclic (r, t)-LRCs via linearized polynomials over finite fields. These two constructions include two earlier ones of cyclic LRCs from trace functions and truncated trace functions as special cases and lead to LRCs with new parameters that can not be produced by earlier ones.

  • Secret Key Generation Scheme Based on Deep Learning in FDD MIMO Systems

    Zheng WAN  Kaizhi HUANG  Lu CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/07
      Vol:
    E104-D No:7
      Page(s):
    1058-1062

    In this paper, a deep learning-based secret key generation scheme is proposed for FDD multiple-input and multiple-output (MIMO) systems. We built an encoder-decoder based convolutional neural network to characterize the wireless environment to learn the mapping relationship between the uplink and downlink channel. The designed neural network can accurately predict the downlink channel state information based on the estimated uplink channel state information without any information feedback. Random secret keys can be generated from downlink channel responses predicted by the neural network. Simulation results show that deep learning based SKG scheme can achieve significant performance improvement in terms of the key agreement ratio and achievable secret key rate.

  • Highly Reliable Radio Access Scheme by Duplicate Transmissions via Multiple Frequency Channels and Suppressed Useless Transmission under Interference from Other Systems

    Hideya SO  Takafumi FUJITA  Kento YOSHIZAWA  Maiko NAYA  Takashi SHIMIZU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    696-704

    This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.

  • An Improved Online Multiclass Classification Algorithm Based on Confidence-Weighted

    Ji HU  Chenggang YAN  Jiyong ZHANG  Dongliang PENG  Chengwei REN  Shengying YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    840-849

    Online learning is a method which updates the model gradually and can modify and strengthen the previous model, so that the updated model can adapt to the new data without having to relearn all the data. However, the accuracy of the current online multiclass learning algorithm still has room for improvement, and the ability to produce sparse models is often not strong. In this paper, we propose a new Multiclass Truncated Gradient Confidence-Weighted online learning algorithm (MTGCW), which combine the Truncated Gradient algorithm and the Confidence-weighted algorithm to achieve higher learning performance. The experimental results demonstrate that the accuracy of MTGCW algorithm is always better than the original CW algorithm and other baseline methods. Based on these results, we applied our algorithm for phishing website recognition and image classification, and unexpectedly obtained encouraging experimental results. Thus, we have reasons to believe that our classification algorithm is clever at handling unstructured data which can promote the cognitive ability of computers to a certain extent.

  • Multi-Cell Interference Mitigation for MIMO Non-Orthogonal Multiple Access Systems

    Changyong SHIN  Jiho HAN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/11/16
      Vol:
    E104-A No:5
      Page(s):
    838-843

    This letter proposes a downlink multiple-input multiple-output (MIMO) non-orthogonal multiple access technique that mitigates multi-cell interference (MCI) at cell-edge users, regardless of the number of interfering cells, thereby improving the spectral efficiency. This technique employs specific receive beamforming vectors at the cell-edge users in clusters to minimize the MCI. Based on the receive beamforming vectors adopted by the cell-edge users, the transmit beamforming vectors for a base station (BS) and the receive beamforming vectors for cell-center users are designed to eliminate the inter-cluster interference and maximize the spectral efficiency. As each user can directly obtain its own receive beamforming vector, this technique does not require channel feedback from the users to a BS to design the receive beamforming vectors, thereby reducing the system overhead. We also derive the upper bound of the average sum rate achievable using the proposed technique. Finally, we demonstrate through simulations that the proposed technique achieves a better sum rate performance than the existing schemes and that the derived upper bound is valid.

  • Optimization of Hybrid Energy System Configuration for Marine Diesel Engine Open Access

    Guangmiao ZENG  Rongjie WANG  Ran HAN  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2020/11/11
      Vol:
    E104-A No:5
      Page(s):
    786-796

    Because solar energy is intermittent and a ship's power-system load fluctuates and changes abruptly, in this work, the solar radiation parameters were adjusted according to the latitude and longitude of the ship and the change of the sea environment. An objective function was constructed that accounted for the cost and service life simultaneously to optimize the configuration of the marine diesel engine hybrid energy system. Finally, the improved artificial bee colony algorithm was used to optimize and obtain the optimal system configuration. The feasibility of the method was verified by ship navigation tests. This method exhibited better configuration performance optimization than the traditional methods.

  • Design and Implementation of LoRa-Based Wireless Sensor Network with Embedded System for Smart Agricultural Recycling Rapid Processing Factory

    Chia-Yu WANG  Chia-Hsin TSAI  Sheng-Chung WANG  Chih-Yu WEN  Robert Chen-Hao CHANG  Chih-Peng FAN  

     
    INVITED PAPER

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:5
      Page(s):
    563-574

    In this paper, the effective Long Range (LoRa) based wireless sensor network is designed and implemented to provide the remote data sensing functions for the planned smart agricultural recycling rapid processing factory. The proposed wireless sensor network transmits the sensing data from various sensors, which measure the values of moisture, viscosity, pH, and electrical conductivity of agricultural organic wastes for the production and circulation of organic fertilizers. In the proposed wireless sensor network design, the LoRa transceiver module is used to provide data transmission functions at the sensor node, and the embedded platform by Raspberry Pi module is applied to support the gateway function. To design the cloud data server, the MySQL methodology is applied for the database management system with Apache software. The proposed wireless sensor network for data communication between the sensor node and the gateway supports a simple one-way data transmission scheme and three half-duplex two-way data communication schemes. By experiments, for the one-way data transmission scheme under the condition of sending one packet data every five seconds, the packet data loss rate approaches 0% when 1000 packet data is transmitted. For the proposed two-way data communication schemes, under the condition of sending one packet data every thirty seconds, the average packet data loss rates without and with the data-received confirmation at the gateway side can be 3.7% and 0%, respectively.

  • Non-Volatile Main Memory Emulator for Embedded Systems Employing Three NVMM Behaviour Models

    Yu OMORI  Keiji KIMURA  

     
    PAPER-Computer System

      Pubricized:
    2021/02/05
      Vol:
    E104-D No:5
      Page(s):
    697-708

    Emerging byte-addressable non-volatile memory devices attract much attention. A non-volatile main memory (NVMM) built on them enables larger memory size and lower power consumption than a traditional DRAM main memory. To fully utilize an NVMM, both software and hardware must be cooperatively optimized. Simultaneously, even focusing on a memory module, its micro architecture is still being developed though real non-volatile memory modules, such as Intel Optane DC persistent memory (DCPMM), have been on the market. Looking at existing NVMM evaluation environments, software simulators can evaluate various micro architectures with their long simulation time. Emulators can evaluate the whole system fast with less flexibility in their configuration than simulators. Thus, an NVMM emulator that can realize flexible and fast system evaluation still has an important role to explore the optimal system. In this paper, we introduce an NVMM emulator for embedded systems and explore a direction of optimization techniques for NVMMs by using it. It is implemented on an SoC-FPGA board employing three NVMM behaviour models: coarse-grain, fine-grain and DCPMM-based. The coarse and fine models enable NVMM performance evaluations based on extensions of traditional DRAM behaviour. The DCPMM-based model emulates the behaviour of a real DCPMM. Whole evaluation environment is also provided including Linux kernel modifications and several runtime functions. We first validate the developed emulator with an existing NVMM emulator, a cycle-accurate NVMM simulator and a real DCPMM. Then, the program behavior differences among three models are evaluated with SPEC CPU programs. As a result, the fine-grain model reveals the program execution time is affected by the frequency of NVMM memory requests rather than the cache hit ratio. Comparing with the fine-grain model and the coarse-grain model under the condition of the former's longer total write latency than the latter's, the former shows lower execution time for four of fourteen programs than the latter because of the bank-level parallelism and the row-buffer access locality exploited by the former model.

  • An Experimental Study across GPU DBMSes toward Cost-Effective Analytical Processing

    Young-Kyoon SUH  Seounghyeon KIM  Joo-Young LEE  Hawon CHU  Junyoung AN  Kyong-Ha LEE  

     
    LETTER

      Pubricized:
    2020/11/06
      Vol:
    E104-D No:5
      Page(s):
    551-555

    In this letter we analyze the economic worth of GPU on analytical processing of GPU-accelerated database management systems (DBMSes). To this end, we conducted rigorous experiments with TPC-H across three popular GPU DBMSes. Consequently, we show that co-processing with CPU and GPU in the GPU DBMSes was cost-effective despite exposed concerns.

  • AirMatch: An Automated Mosaicing System with Video Preprocessing Engine for Multiple Aerial Feeds

    Nida RASHEED  Waqar S. QURESHI  Shoab A. KHAN  Manshoor A. NAQVI  Eisa ALANAZI  

     
    PAPER-Software System

      Pubricized:
    2021/01/14
      Vol:
    E104-D No:4
      Page(s):
    490-499

    Surveillance through aerial systems is in place for years. Such systems are expensive, and a large fleet is in operation around the world without upgrades. These systems have low resolution and multiple analog cameras on-board, with Digital Video Recorders (DVRs) at the control station. Generated digital videos have multi-scenes from multi-feeds embedded in a single video stream and lack video stabilization. Replacing on-board analog cameras with the latest digital counterparts requires huge investment. These videos require stabilization and other automated video analysis prepossessing steps before passing it to the mosaicing algorithm. Available mosaicing software are not tailored to segregate feeds from different cameras and scenes, automate image enhancements, and stabilize before mosaicing (image stitching). We present "AirMatch", a new automated system that first separates camera feeds and scenes, then stabilize and enhance the video feed of each camera; generates a mosaic of each scene of every feed and produce a super quality mosaic by stitching mosaics of all feeds. In our proposed solution, state-of-the-art video analytics techniques are tailored to work on videos from vintage cameras in aerial applications. Our new framework is independent of specialized hardware requirements and generates effective mosaics. Affine motion transform with smoothing Gaussian filter is selected for the stabilization of videos. A histogram-based method is performed for scene change detection and image contrast enhancement. Oriented FAST and rotated BRIEF (ORB) is selected for feature detection and descriptors in video stitching. Several experiments on a number of video streams are performed and the analysis shows that our system can efficiently generate mosaics of videos with high distortion and artifacts, compared with other commercially available mosaicing software.

  • Development and Effectiveness Evaluation of Interactive Voice HMI System

    Chiharu KATAOKA  Osamu KUKIMOTO  Yuichiro YOSHIKAWA  Kohei OGAWA  Hiroshi ISHIGURO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/01/13
      Vol:
    E104-D No:4
      Page(s):
    500-507

    Connected services have been under development in the automotive industry. Meanwhile, the volume of predictive notifications that utilize travel-related data is increasing, and there are concerns that drivers cannot process such an amount of information or do not accept and follow such predictive instructions straightforwardly because the information provided is predicted. In this work, an interactive voice system using two agents is proposed to realize notifications that can easily be accepted by drivers and enhance the reliability of the system by adding contextual information. An experiment was performed using a driving simulator to compare the following three forms of notifications: (1) notification with no contextual information, (2) notification with contextual information using one agent, and (3) notification with contextual information using two agents. The notification content was limited to probable near-miss incidents. The results of the experiment indicate that the driver may decelerate more with the one- and two-agent notification methods than with the conventional notification method. The degree of deceleration depended the number of times the notification was provided and whether there were cars parked on the streets.

121-140hit(3179hit)