The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] system(3186hit)

3161-3180hit(3186hit)

  • A 15 GFLOPS Parallel DSP System for Super High Definition Image Processing

    Tomoko SAWABE  Tetsurou FUJII  Hiroshi NAKADA  Naohisa OHTA  Sadayasu ONO  

     
    INVITED PAPER

      Vol:
    E75-A No:7
      Page(s):
    786-793

    This paper describes a super high definition (SHD) image processing system we have developed. The computing engine of this system is a parallel processing system with 128 processing elements called NOVI- HiPIPE. A new pipelined vector processor is introduced as a backend processor of each processing element in order to meet the great computing power required by SHD image processing. This pipelined vector processor can achieve 120 MFLOPS. The 128 pipelined vector processors installed in NOVI- HiPIPE yield a total system peak performance of 15 GFLOPS. The SHD image processing system consists of an SHD image scanner, and SHD image storage node, a full color printer, a film recorder, NOVI- HiPIPE, and a Super Frame Memory. The Super Frame Memory can display a ful color moving image sequence at a rate of 60 fps on a CRT monitor at a resolution of 2048 by 2048 pixels. Workstations, interconnected through an Ethernet, are used to control these units, and SHD image data can be easily transfered among the units. NOVI- HiPIPE has a frame memory which can display SHD still images on a color monitor, therefore, one processed frame can be directly displayed. We are developing SHD image processing algorithms and parallel processing methodologies using this system.

  • Heuristic Subcube Allocation in Hypercube Systems

    O Han KANG  Soo Young YOON  Hyun Soo YOON  Jung Wan CHO  

     
    PAPER-Computer Systems

      Vol:
    E75-D No:4
      Page(s):
    517-526

    The main objective of this paper is to propose a new top-down subcube allocation scheme which has complete subcube recognition capability with quick response time. The proposed subcube allocation scheme, called Heuristic Subcube Allocation (HSA) strategy, is based on a heuristic and undirected graph, called Subcube (SC)-graph, whose vertices represent the free subcubes, and edge represents inter-relationships between free subcubes. It helps to reduce the response time and internal/external fragmentation. When a new subcube is released, the higher dimension subcube is generated by the cycle detection in the SC-graph, and the heuristic is used to reduce the allocation time and to maintain the dimension of the free subcube as high as possible. It is theoretically shown that the HSA strategy is not only statically optimal but also it has a complete subcube recognition capability in a dynamic environment. Extensive simulation results show that the HSA strategy improves the performance and significantly reduces the response time compared to the previously proposed schemes.

  • Uniqueness of Performance Variables for Optimal Static Load Balancing in Open BCMP Queueing Networks

    Hisao KAMEDA  Yongbing ZHANG  

     
    PAPER-Computer Networks

      Vol:
    E75-D No:4
      Page(s):
    535-542

    Optimal static load balancing problems in open BCMP queueing networks with state-independent arrival and service rates are studied. Their examples include optimal static load balancing in distributed computer systems and static routing in communication networks. We refer to the load balancing policy of minimizing the overall mean response (or sojourn) time of a job as the overall optimal policy. We show the conditions that the solutions of the overall optimal policy satisfy and show that the policy uniquely determines the utilization of each service center, the mean delay for each class and each path class, etc., although the solution, the utilization for each class, the mean delay for all classes at each service center, etc., may not be unique. Then we give tha linear relations that characterize the set whose elements are the optimal solutions, and discuss the condition wherein the overall optimal policy has a unique solution. In parametric analysis and numerical calculation of optimal values of performance variables we must ensure whether they can be uniquely determined.

  • Algorithmic Learning Theory with Elementary Formal Systems

    Setsuo ARIKAWA  Satoru MIYANO  Ayumi SHINOHARA  Takeshi SHINOHARA  Akihiro YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E75-D No:4
      Page(s):
    405-414

    The elementary formal system (EFS, for short) is a kind of logic program which directly manipulates character strings. This paper outlines in brief the authors' studies on algorithmic learning theory developed in the framework of EFS's. We define two important classes of EFS's and a new hierarchy of various language classes. Then we discuss EFS's as logic programs. We show that EFS's form a good framework for inductive inference of languages by presenting model inference system for EFS's in Shapiro's sense. Using the framework we also show that inductive inference from positive data and PAC-learning are both much more powerful than they have been believed. We illustrate an application of our theoretical results to Molecular Biology.

  • On the Frequency-Weighting Sensitivity of 2-D State-Space Digital Filters Based on the Fornasini-Marchesini Second Model

    Takao HINAMOTO  Toshiaki TAKAO  

     
    PAPER-Multidimensional Signals, Systems and Filters

      Vol:
    E75-A No:7
      Page(s):
    813-820

    Based on the Fornasini-Marchesini second local state-space (LSS) model, the coefficient sensitivities of two-dimensional (2-D) digital filters are analyzed in conjunction with frequency weighting functions. The overall sensitivity called the frequency-weighting sensitivity is then evaluated using the 2-D generalized Gramians that are newly introduced for the Fornasini-Marchesini second LSS model. Next, the 2-D filter structures that minimize the frequency-weighting sensitivity are synthesized for two cases of no constraint and scaling constraints on the state variables. Finally, an example is given to illustrate the utility of the proposed technique.

  • An Integrated MMIC CAD System

    Takashi YAMADA  Masao NISHIDA  Tetsuro SAWAI  Yasoo HARADA  

     
    PAPER

      Vol:
    E75-C No:6
      Page(s):
    656-662

    An integrated CAD/CAM system for MMIC development has been firstly realized, which consists of electron beam direct drawing, microwave circuit simulator, pattern generator and RF &DC on-wafer automatic measurement subsystems, connected through an Ethernet LAN. The system can develop not only new MMICs and their element devices, but also their accurate simulation models quickly and efficiently. Preliminary successful applications of this system have been demonstrated by DC-HFET with a 0.25 µm T-shaped gate electrode and MMIC low-noise amplifiers operating at X- and L-bands.

  • Multiterminal Filtering for Decentralized Detection Systems

    Te Sun HAN  Kingo KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-B No:6
      Page(s):
    437-444

    The optimal coding strategy for signal detection in the correlated gaussian noise is established for the distributed sensors system with essentially zero transmission rate constraint. Specifically, we are able to obtain the same performance as in the situation of no restriction on rate from each sensor terminal to the fusion center. This simple result contrasts with the previous ad hoc studies containing many unnatural assumptions such as the independence of noises contaminating received signal at each sensor. For the design of optimal coder, we can use the classical Levinson-Wiggins-Robinson fast algorithm for block Toeplitz matrix to evaluate the necessary weight vector for the maximum-likelihood detection.

  • Effects of Power Control Error on the System User Capacity of DS/CDMA Cellular Mobile Radios

    Eisuke KUDOH  Tadashi MATSUMOTO  

     
    LETTER-Radio Communication

      Vol:
    E75-B No:6
      Page(s):
    524-529

    User capacity of a DS/CDMA cellular mobile radio system employing transmitter power control (TPC) is investigated. Assuming log-normally distributed control error, outage probability is evaluated through computer simulations. The user capacity is dramatically decreased as the power control error increases. If the standard deviation is larger than about 2dB, the user capacity is decreased by more than 60%. It is shown that power control error with a standard deviation of less than or equal to 0.5dB is required to accommodate 90% of the maximum user capacity. The capacity decrease in the reverse and forward link channels due to non-uniform user distributions are also investigated. It is shown that if system users are densely distributed within the zone fringe whose thickness is 80% of the radius, the reverse link capacity is decreased by about 22%. The forward link capacity is comparatively insenstitive to non-uniform user distribution.

  • Visual Communications in the U.S.

    Charles N. JUDICE  

     
    INVITED PAPER

      Vol:
    E75-B No:5
      Page(s):
    309-312

    To describe the state of visual communications in the U.S., two words come to mind: digital and anticipation. Although compressed, digital video has been used in teleconferencing systems for at least ten years, it is only recently that a broad consensus has developed among diverse industries anticipating business opportunities, value, or both in digital video. The drivers for this turning point are: advances in digital signal processing, continued improvement in the cost, complexity, and speed of VLSI, maturing international standards and their adoption by vendors and end users, and a seemingly insatiable consumer demand for greater diversity, accessibility, and control of communication systems.

  • Presto: A Bus-Connected Multiprocessor for a Rete-Based Production System

    Hideo KIKUCHI  Takashi YUKAWA  Kazumitsu MATSUZAWA  Tsutomu ISHIKAWA  

     
    PAPER-Computer Systems

      Vol:
    E75-D No:3
      Page(s):
    265-273

    This paper discusses the design, implementation, and performance of a bus-connected multiprocessor, called Presto, for a Rete-based production system. To perform a match, which is a major phase of a production system, a Presto match scheme exploits the subnetworks that are separated by the top two-input nodes and the token flow control at these nodes. Since parallelism of a production system can only increase speed 10-fold, the aim is to do so efficiently on a low-cost, compact bus-connected multi-processor system without shared memory or cache memory. The Presto hardware consists of up to 10 processisng elements (PEs), each comprising a commercial microprocessor, 4 Mbytes of local memory, and two kinds of newly developed ASIC chips for memory control and bus control. Hierarchical system software is provided for developing interpreter programs. Measurement with 10 PEs shows that sample programs run 5-7 times faster.

  • Applying Adaptive Credit Assignment Algorithm for the Learning Classifier System Based upon the Genetic Algorithm

    Shozo TOKINAGA  Andrew B. WHINSTON  

     
    PAPER-Neural Systems

      Vol:
    E75-A No:5
      Page(s):
    568-577

    This paper deals with an adaptive credit assignment algorithm to select strategies having higher capabilities in the learning classifier system (LCS) based upon the genetic algorithm (GA). We emulate a kind of prizes and incentives employed in the economies with imperfect information. The compensation scheme provides an automatic adjustment in response to the changes in the environment, and a comfortable guideline to incorporate the constraints. The learning process in the LCS based on the GA is realized by combining a pair of most capable strategies (called classifiers) represented as the production rules to replace another less capable strategy in the similar manner to the genetic operation on chromosomes in organisms. In the conventional scheme of the learning classifier system, the capability s(k, t) (called strength) of a strategy k at time t is measured by only the suitableness to sense and recognize the environment. But, we also define and utilize the prizes and incentives obtained by employing the strategy, so as to increase s(k, t) if the classifier provide good rules, and some amount is subtracted if the classifier k violate the constraints. The new algorithm is applied to the portfolio management. As the simulation result shows, the net return of the portfolio management system surpasses the average return obtained in the American securities market. The result of the illustrative example is compared to the same system composed of the neural networks, and related problems are discussed.

  • Information Geometry of Neural Networks

    Shun-ichi AMARI  

     
    INVITED PAPER

      Vol:
    E75-A No:5
      Page(s):
    531-536

    Information geometry is a new powerful method of information sciences. Information geometry is applied to manifolds of neural networks of various architectures. Here is proposed a new theoretical approach to the manifold consisting of feedforward neural networks, the manifold of Boltzmann machines and the manifold of neural networks of recurrent connections. This opens a new direction of studies on a family of neural networks, not a study of behaviors of single neural networks.

  • New Classes of Majority-Logic Decodable Double Error Correcting Codes for Computer Memories

    Toshio HORIGUCHI  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E75-D No:3
      Page(s):
    325-333

    A new class of (m23m1,m2) 1-step majority-logic decodable double error correcting codes (1-step DEC codes) is described, where m is an odd integer. Combining this code with properly constructed (m1k1,k1) and (m,k2) 1-step DEC codes, a (m23(mk1)1,m23k1) 1-step DEC code and a (m23(mk2)1,m2) 2-step majority-logic decodable DEC code (2-step DEC code) are obtained, respectively. Considering computer memory applications, some practical 1 -and 2-step DEC codes with data-bit lengths of 24, 32, 64 and 72 are obtained by shortening the new codes, and are compared to existing majority-logic decodable DEC codes. It is shown that, for given data-bit lengths, new 2-step DEC codes have much better code rates than self-orthogonal DEC codes but slightly worse code rates than existing 2-step majority-logic decodable cyclic DEC codes (2-step cyclic DEC codes). However, parallel decoders of new 2-step DEC codes are much simpler than those of exisiting 2-step cyclic DEC codes, and are nearly as simple as those of 1-step DEC codes.

  • A Switching Closure Test to Analyze Cryptosystems

    Hikaru MORITA  Kazuo OHTA  

     
    PAPER

      Vol:
    E75-A No:4
      Page(s):
    498-503

    A closure test MCT (meet-in-the-middle closure test) has been introduced to analyze the algebraic properties of cryptosystems. Since MCT needs a large amount of memory, it is hard to implement with an ordinary meet-in-the-middle method. As a feasible version of MCT, this paper presents a switching closure test SCT based on a new memoryless meet-in-the-middle method. To achieve the memoryless method, appropriate techniques, such as expansion of cycling detection methods for one function into a method for two functions and an efficient intersection search method that uses only a small amount of memory, are effectively used.

  • Delta Domain Lyapunov Matrix Equation--A Link between Continuous and Discrete Equations--

    Takehiro MORI  Inge TROCH  

     
    LETTER-Control and Computing

      Vol:
    E75-A No:3
      Page(s):
    451-454

    It has been recognized that there exist some disparities between properties of continuous control systems and those of discrete ones which are obtained from their continuous counterparts by use of a sampler and zero order hold. This still remains true even if the sampling rate becomes fast enough and sometimes causes unfavorable effects in control systems design. To reconcile with this conflict, use of delta operator has been proposed in place of z-operator recently. This note formulates a delta domain Lyapunov matrix equation and shows that the equation actually mediates the discrete Lyapunov equation and its continuous counterpart.

  • Bifurcation Phenomena of a Distributed Parameter System with a Nonlinear Element Having Negative Resistance

    Hideo NAKANO  Hideaki OKAZAKI  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    339-346

    Dynamic behavior of a distributed parameter system described by the one-dimensional wave equation with a nonlinear boundary condition is examined in detail using a graphical method proposed by Witt on a digital computer. The bifurcation diagram, homoclinic orbit and one-dimensional map are obtained and examined. Results using an analog simulator are introduced and compared with that of the graphical method. The discrepancy between these results is considered, and from the comparison among the bifurcation diagrams obtained by the graphical method, it is denoted that the energy dissipation in the system considerably restrains the chaotic state in the bifurcation process.

  • Service Specification and Its Protocol Specifications in LOTOS--A Survey for Synthesis and Execution--

    Teruo HIGASHINO  

     
    INVITED PAPER

      Vol:
    E75-A No:3
      Page(s):
    330-338

    LOTOS is a language developed within ISO for the formal description of communication protocols and distributed systems. In LOTOS, requirements for a distributed system are called a "service specification". Each node exchanges synchronization messages to ensure the temporal ordering for the execution of events in a service specification. The actions of each node are described as a "protocol specification". This paper gives a survey for a method to derive protocol specifications from a service specification written in a LOTOS based language. In order to derive the protocol specifications, we make the syntax tree of a given service specification and give some attributes for each node in the tree. The protocol specifications are derived automatically by evaluating these attributes. The derived protocol specifications satisfy the given service specification. We also explain a LOTOS simulator for the execution of derived protocol specifications. The related works are also summarized.

  • A Simulation Model of Hyperthermia by RF Capacitive Heating

    Yasutomo OHGUCHI  Naoki WATANABE  Yoshiro NIITSU  Osamu DOI  Ken KODAMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E75-D No:2
      Page(s):
    219-250

    A new model for a computer simulation of RF capacitive type hyperthermia has been developed by taking account of the following points. Blood flow is usually determined by many physiological parameters, but is regarded as a function of only blood temperature under some conditions. The temperature dependence of blood flow of tumors and normal tissues is assumed by referring the data obtained by Song et al. and Tanaka. The blood temperature which is elevated by externally applied power significantly affects temperatures of the body and the tumors. The transport of heat from the body surface is studied by considering air convection. These points are examined by experiments on a computer with simple phantom models and real patients. The results of simulation on the patient have shown a good agreement with clinical inspection based on CT images and a temperature of the stomach.

  • Exploiting Separability in Numerical Analysis of Nonlinear Systems

    Kiyotaka YAMAMURA  

     
    INVITED PAPER

      Vol:
    E75-A No:3
      Page(s):
    285-293

    The aim of this article is to show the effectiveness of exploiting separability in numerical analysis of nonlinear systems. Separability is a valuable property of nonlinear mappings which appears with surprising frequency in science and engineering. By exploiting this property, computational complexity of many numerical algorithms can be substantially improved. However, this idea has not been received much attention in the fields of electronics, information and communication engineerings. In recent years, efficient algorithms that exploit the separability have been proposed in the areas of circuit analysis, homotopy methods, integer labeling methods, nonlinear programming, information theory, numerical differentiation, and neural networks. In this article, these algorithms are surveyed, and it is shown that considerable improvement of computational efficiency can be achieved by exploiting the separability.

  • Compositional Synthesis for Cooperating Discrete Event Systems from Modular Temporal Logic Specifications

    Naoshi UCHIHIRA  

     
    PAPER

      Vol:
    E75-A No:3
      Page(s):
    380-391

    A Discrete Event System (DES) is a system that is modeled by a finite automaton. A Cooperating Discrete Event System (CDES) is a distributed system which consists of several local DESs which are synchronized with each other to accomplish its own goal. This paper describes the automatic synthesis of a CDES from a modular temporal logic specification. First, MPTS (Modular Practical Temporal Specification language) is proposed in which the new features (modular structure and domain specification) are appended to temporal logic. To overcome the "state explosion problem", which occurs in generating a global automaton in former synthesis methods using temporal logic, a compositional synthesis is proposed where automata are reduced at every composition step.

3161-3180hit(3186hit)