The search functionality is under construction.

Keyword Search Result

[Keyword] system(3179hit)

101-120hit(3179hit)

  • Semantic Shilling Attack against Heterogeneous Information Network Based Recommend Systems

    Yizhi REN  Zelong LI  Lifeng YUAN  Zhen ZHANG  Chunhua SU  Yujuan WANG  Guohua WU  

     
    PAPER

      Pubricized:
    2021/11/30
      Vol:
    E105-D No:2
      Page(s):
    289-299

    The recommend system has been widely used in many web application areas such as e-commerce services. With the development of the recommend system, the HIN modeling method replaces the traditional bipartite graph modeling method to represent the recommend system. But several studies have already showed that recommend system is vulnerable to shilling attack (injecting attack). However, the effectiveness of how traditional shilling attack has rarely been studied directly in the HIN model. Moreover, no study has focused on how to enhance shilling attacks against HIN recommend system by using the high-level semantic information. This work analyzes the relationship between the high-level semantic information and the attacking effects in HIN recommend system. This work proves that attack results are proportional to the high-level semantic information. Therefore, we propose a heuristic attack method based on high-level semantic information, named Semantic Shilling Attack (SSA) on a HIN recommend system (HERec). This method injects a specific score into each selected item related to the target in semantics. It ensures transmitting the misleading information towards target items and normal users, and attempts to interfere with the effect of the recommend system. The experiment is dependent on two real-world datasets, and proves that the attacking effect is positively correlate with the number of meta-paths. The result shows that our method is more effective when compared with existing baseline algorithms.

  • Toward Blockchain-Based Spoofing Defense for Controlled Optimization of Phases in Traffic Signal System

    Yingxiao XIANG  Chao LI  Tong CHEN  Yike LI  Endong TONG  Wenjia NIU  Qiong LI  Jiqiang LIU  Wei WANG  

     
    PAPER

      Pubricized:
    2021/09/13
      Vol:
    E105-D No:2
      Page(s):
    280-288

    Controlled optimization of phases (COP) is a core implementation in the future intelligent traffic signal system (I-SIG), which has been deployed and tested in countries including the U.S. and China. In such a system design, optimal signal control depends on dynamic traffic situation awareness via connected vehicles. Unfortunately, I-SIG suffers data spoofing from any hacked vehicle; in particular, the spoofing of the last vehicle can break the system and cause severe traffic congestion. Specifically, coordinated attacks on multiple intersections may even bring cascading failure of the road traffic network. To mitigate this security issue, a blockchain-based multi-intersection joint defense mechanism upon COP planning is designed. The major contributions of this paper are the following. 1) A blockchain network constituted by road-side units at multiple intersections, which are originally distributed and decentralized, is proposed to obtain accurate and reliable spoofing detection. 2) COP-oriented smart contract is implemented and utilized to ensure the credibility of spoofing vehicle detection. Thus, an I-SIG can automatically execute a signal planning scheme according to traffic information without spoofing data. Security analysis for the data spoofing attack is carried out to demonstrate the security. Meanwhile, experiments on the simulation platform VISSIM and Hyperledger Fabric show the efficiency and practicality of the blockchain-based defense mechanism.

  • Feasibility Study for Computer-Aided Diagnosis System with Navigation Function of Clear Region for Real-Time Endoscopic Video Image on Customizable Embedded DSP Cores

    Masayuki ODAGAWA  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    LETTER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/08
      Vol:
    E105-A No:1
      Page(s):
    58-62

    This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.

  • Leveraging Scale-Up Machines for Swift DBMS Replication on IaaS Platforms Using BalenaDB

    Kaiho FUKUCHI  Hiroshi YAMADA  

     
    PAPER-Software System

      Pubricized:
    2021/10/01
      Vol:
    E105-D No:1
      Page(s):
    92-104

    In infrastructure-as-a-service platforms, cloud users can adjust their database (DB) service scale to dynamic workloads by changing the number of virtual machines running a DB management system (DBMS), called DBMS instances. Replicating a DBMS instance is a non-trivial task since DBMS replication is time-consuming due to the trend that cloud vendors offer high-spec DBMS instances. This paper presents BalenaDB, which performs urgent DBMS replication for handling sudden workload increases. Unlike convectional replication schemes that implicitly assume DBMS replicas are generated on remote machines, BalenaDB generates a warmed-up DBMS replica on an instance running on the local machine where the master DBMS instance runs, by leveraging the master DBMS resources. We prototyped BalenaDB on MySQL 5.6.21, Linux 3.17.2, and Xen 4.4.1. The experimental results show that the time for generating the warmed-up DBMS replica instance on BalenaDB is up to 30× shorter than an existing DBMS instance replication scheme, achieving significantly efficient memory utilization.

  • Classification with CNN features and SVM on Embedded DSP Core for Colorectal Magnified NBI Endoscopic Video Image

    Masayuki ODAGAWA  Takumi OKAMOTO  Tetsushi KOIDE  Toru TAMAKI  Shigeto YOSHIDA  Hiroshi MIENO  Shinji TANAKA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2021/07/21
      Vol:
    E105-A No:1
      Page(s):
    25-34

    In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.

  • LTL Model Checking for Register Pushdown Systems

    Ryoma SENDA  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/08/31
      Vol:
    E104-D No:12
      Page(s):
    2131-2144

    A pushdown system (PDS) is known as an abstract model of recursive programs. For PDS, model checking methods have been studied and applied to various software verification such as interprocedural data flow analysis and malware detection. However, PDS cannot manipulate data values from an infinite domain. A register PDS (RPDS) is an extension of PDS by adding registers to deal with data values in a restricted way. This paper proposes algorithms for LTL model checking problems for RPDS with simple and regular valuations, which are labelings of atomic propositions to configurations with reasonable restriction. First, we introduce RPDS and related models, and then define the LTL model checking problems for RPDS. Second, we give algorithms for solving these problems and also show that the problems are EXPTIME-complete. As practical examples, we show solutions of a malware detection and an XML schema checking in the proposed framework.

  • Weight Sparseness for a Feature-Map-Split-CNN Toward Low-Cost Embedded FPGAs

    Akira JINGUJI  Shimpei SATO  Hiroki NAKAHARA  

     
    PAPER

      Pubricized:
    2021/09/27
      Vol:
    E104-D No:12
      Page(s):
    2040-2047

    Convolutional neural network (CNN) has a high recognition rate in image recognition and are used in embedded systems such as smartphones, robots and self-driving cars. Low-end FPGAs are candidates for embedded image recognition platforms because they achieve real-time performance at a low cost. However, CNN has significant parameters called weights and internal data called feature maps, which pose a challenge for FPGAs for performance and memory capacity. To solve these problems, we exploit a split-CNN and weight sparseness. The split-CNN reduces the memory footprint by splitting the feature map into smaller patches and allows the feature map to be stored in the FPGA's high-throughput on-chip memory. Weight sparseness reduces computational costs and achieves even higher performance. We designed a dedicated architecture of a sparse CNN and a memory buffering scheduling for a split-CNN and implemented this on the PYNQ-Z1 FPGA board with a low-end FPGA. An experiment on classification using VGG16 shows that our implementation is 3.1 times faster than the GPU, and 5.4 times faster than an existing FPGA implementation.

  • A Case for Low-Latency Communication Layer for Distributed Operating Systems

    Sang-Hoon KIM  

     
    LETTER-Software System

      Pubricized:
    2021/09/06
      Vol:
    E104-D No:12
      Page(s):
    2244-2247

    There have been increasing demands for distributed operating systems to better utilize scattered resources over multiple nodes. This paper enlightens the challenges and requirements for the communication layers for distributed operating systems, and makes a case for a versatile, high-performance communication layer over InfiniBand network.

  • Performance Comparison of Training Datasets for System Call-Based Malware Detection with Thread Information

    Yuki KAJIWARA  Junjun ZHENG  Koichi MOURI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/09/21
      Vol:
    E104-D No:12
      Page(s):
    2173-2183

    The number of malware, including variants and new types, is dramatically increasing over the years, posing one of the greatest cybersecurity threats nowadays. To counteract such security threats, it is crucial to detect malware accurately and early enough. The recent advances in machine learning technology have brought increasing interest in malware detection. A number of research studies have been conducted in the field. It is well known that malware detection accuracy largely depends on the training dataset used. Creating a suitable training dataset for efficient malware detection is thus crucial. Different works usually use their own dataset; therefore, a dataset is only effective for one detection method, and strictly comparing several methods using a common training dataset is difficult. In this paper, we focus on how to create a training dataset for efficiently detecting malware. To achieve our goal, the first step is to clarify the information that can accurately characterize malware. This paper concentrates on threads, by treating them as important information for characterizing malware. Specifically, on the basis of the dynamic analysis log from the Alkanet, a system call tracer, we obtain the thread information and classify the thread information processing into four patterns. Then the malware detection is performed using the number of transitions of system calls appearing in the thread as a feature. Our comparative experimental results showed that the primary thread information is important and useful for detecting malware with high accuracy.

  • Proposal and Evaluation of IO Concentration-Aware Mechanisms to Improve Efficiency of Hybrid Storage Systems

    Kazuichi OE  Takeshi NANRI  

     
    PAPER

      Pubricized:
    2021/07/30
      Vol:
    E104-D No:12
      Page(s):
    2109-2120

    Hybrid storage techniques are useful methods to improve the cost performance for input-output (IO) intensive workloads. These techniques choose areas of concentrated IO accesses and migrate them to an upper tier to extract as much performance as possible through greater use of upper tier areas. Automated tiered storage with fast memory and slow flash storage (ATSMF) is a hybrid storage system situated between non-volatile memories (NVMs) and solid-state drives (SSDs). ATSMF aims to reduce the average response time for IO accesses by migrating areas of concentrated IO access from an SSD to an NVM. When a concentrated IO access finishes, the system migrates these areas from the NVM back to the SSD. Unfortunately, the published ATSMF implementation temporarily consumes much NVM capacity upon migrating concentrated IO access areas to NVM, because its algorithm executes NVM migration with high priority. As a result, it often delays evicting areas in which IO concentrations have ended to the SSD. Therefore, to reduce the consumption of NVM while maintaining the average response time, we developed new techniques for making ATSMF more practical. The first is a queue handling technique based on the number of IO accesses for NVM migration and eviction. The second is an eviction method that selects only write-accessed partial regions in finished areas. The third is a technique for variable eviction timing to balance the NVM consumption and average response time. Experimental results indicate that the average response times of the proposed ATSMF are almost the same as those of the published ATSMF, while the NVM consumption is three times lower in best case.

  • An Efficient Public Verifiable Certificateless Multi-Receiver Signcryption Scheme for IoT Environments

    Dae-Hwi LEE  Won-Bin KIM  Deahee SEO  Im-Yeong LEE  

     
    PAPER

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:11
      Page(s):
    1869-1879

    Lightweight cryptographic systems for services delivered by the recently developed Internet of Things (IoT) are being continuously researched. However, existing Public Key Infrastructure (PKI)-based cryptographic algorithms are difficult to apply to IoT services delivered using lightweight devices. Therefore, encryption, authentication, and signature systems based on Certificateless Public Key Cryptography (CL-PKC), which are lightweight because they do not use the certificates of existing PKI-based cryptographic algorithms, are being studied. Of the various public key cryptosystems, signcryption is efficient, and ensures integrity and confidentiality. Recently, CL-based signcryption (CL-SC) schemes have been intensively studied, and a multi-receiver signcryption (MRSC) protocol for environments with multiple receivers, i.e., not involving end-to-end communication, has been proposed. However, when using signcryption, confidentiality and integrity may be violated by public key replacement attacks. In this paper, we develop an efficient CL-based MRSC (CL-MRSC) scheme using CL-PKC for IoT environments. Existing signcryption schemes do not offer public verifiability, which is required if digital signatures are used, because only the receiver can verify the validity of the message; sender authenticity is not guaranteed by a third party. Therefore, we propose a CL-MRSC scheme in which communication participants (such as the gateways through which messages are transmitted) can efficiently and publicly verify the validity of encrypted messages.

  • Multi-Rate Switched Pinning Control for Velocity Control of Vehicle Platoons Open Access

    Takuma WAKASA  Kenji SAWADA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1461-1469

    This paper proposes a switched pinning control method with a multi-rating mechanism for vehicle platoons. The platoons are expressed as multi-agent systems consisting of mass-damper systems in which pinning agents receive target velocities from external devices (ex. intelligent traffic signals). We construct model predictive control (MPC) algorithm that switches pinning agents via mixed-integer quadratic programmings (MIQP) problems. The optimization rate is determined according to the convergence rate to the target velocities and the inter-vehicular distances. This multi-rating mechanism can reduce the computational load caused by iterative calculation. Numerical results demonstrate that our method has a reduction effect on the string instability by selecting the pinning agents to minimize errors of the inter-vehicular distances to the target distances.

  • Synthetic Scene Character Generator and Ensemble Scheme with the Random Image Feature Method for Japanese and Chinese Scene Character Recognition

    Fuma HORIE  Hideaki GOTO  Takuo SUGANUMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2002-2010

    Scene character recognition has been intensively investigated for a couple of decades because it has a great potential in many applications including automatic translation, signboard recognition, and reading assistance for the visually-impaired. However, scene characters are difficult to recognize at sufficient accuracy owing to various noise and image distortions. In addition, Japanese scene character recognition is more challenging and requires a large amount of character data for training because thousands of character classes exist in the language. Some researchers proposed training data augmentation techniques using Synthetic Scene Character Data (SSCD) to compensate for the shortage of training data. In this paper, we propose a Random Filter which is a new method for SSCD generation, and introduce an ensemble scheme with the Random Image Feature (RI-Feature) method. Since there has not been a large Japanese scene character dataset for the evaluation of the recognition systems, we have developed an open dataset JPSC1400, which consists of a large number of real Japanese scene characters. It is shown that the accuracy has been improved from 70.9% to 83.1% by introducing the RI-Feature method to the ensemble scheme.

  • An Effective Feature Extraction Mechanism for Intrusion Detection System

    Cheng-Chung KUO  Ding-Kai TSENG  Chun-Wei TSAI  Chu-Sing YANG  

     
    PAPER

      Pubricized:
    2021/07/27
      Vol:
    E104-D No:11
      Page(s):
    1814-1827

    The development of an efficient detection mechanism to determine malicious network traffic has been a critical research topic in the field of network security in recent years. This study implemented an intrusion-detection system (IDS) based on a machine learning algorithm to periodically convert and analyze real network traffic in the campus environment in almost real time. The focuses of this study are on determining how to improve the detection rate of an IDS and how to detect more non-well-known port attacks apart from the traditional rule-based system. Four new features are used to increase the discriminant accuracy. In addition, an algorithm for balancing the data set was used to construct the training data set, which can also enable the learning model to more accurately reflect situations in real environment.

  • Research & Development of the Advanced Dynamic Spectrum Sharing System between Different Radio Services Open Access

    Hiroyuki SHINBO  Kousuke YAMAZAKI  Yoji KISHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1198-1206

    To achieve highly efficient spectrum usage, dynamic sharing of scarce spectrum resources has recently become the subject of intense discussion. The technologies of dynamic spectrum sharing (DSS) have already been adopted or are scheduled to be adopted in a number of countries, and Japan is no exception. The authors and organizations collaborating in the research and development project being undertaken in Japan have studied a novel DSS system positioned between the fifth-generation mobile communication system (5G system) and different incumbent radio systems. Our DSS system has three characteristics. (1) It detects dynamically unused sharable spectrums (USSs) of incumbent radio systems for the space axis by using novel propagation models and estimation of the transmitting location with radio sensor information. (2) It manages USSs for the time axis by interference calculation with propagation parameters, fair assignment and future usage of USSs. (3) It utilizes USSs for the spectrum axis by using methods that decrease interference for lower separation distances. In this paper, we present an overview and the technologies of our DSS system and its applications in Japan.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • Enhanced Sender-Based Message Logging for Reducing Forced Checkpointing Overhead in Distributed Systems

    Jinho AHN  

     
    LETTER-Dependable Computing

      Pubricized:
    2021/06/08
      Vol:
    E104-D No:9
      Page(s):
    1500-1505

    The previous communication-induced checkpointing may considerably induce worthless forced checkpoints because each process receiving messages cannot obtain sufficient information related to non-causal Z-paths. This paper presents an enhanced sender-based message logging protocol applicable to any communication-induced checkpointing to lead to a high decrease of the forced checkpointing overhead of communication-induced checkpointing in an effective way while permitting no useless checkpoint. The protocol allows each process sending a message to know the exact timestamp of the receiver of the message in its logging procedures without any extra message. Simulation verifies their great efficiency of overhead alleviation regardless of communication patterns.

  • Explanatory Rule Generation for Advanced Driver Assistant Systems

    Juha HOVI  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/11
      Vol:
    E104-D No:9
      Page(s):
    1427-1439

    Autonomous vehicles and advanced driver assistant systems (ADAS) are receiving notable attention as research fields in both academia and private industry. Some decision-making systems use sets of logical rules to map knowledge of the ego-vehicle and its environment into actions the ego-vehicle should take. However, such rulesets can be difficult to create — for example by manually writing them — due to the complexity of traffic as an operating environment. Furthermore, the building blocks of the rules must be defined. One common solution to this is using an ontology specifically aimed at describing traffic concepts and their hierarchy. These ontologies must have a certain expressive power to enable construction of useful rules. We propose a process of generating sets of explanatory rules for ADAS applications from data using ontology as a base vocabulary and present a ruleset generated as a result of our experiments that is correct for the scope of the experiment.

  • A Study on Extreme Wideband 6G Radio Access Technologies for Achieving 100Gbps Data Rate in Higher Frequency Bands Open Access

    Satoshi SUYAMA  Tatsuki OKUYAMA  Yoshihisa KISHIYAMA  Satoshi NAGATA  Takahiro ASAI  

     
    INVITED PAPER

      Pubricized:
    2021/04/01
      Vol:
    E104-B No:9
      Page(s):
    992-999

    In sixth-generation (6G) mobile communication system, it is expected that extreme high data rate communication with a peak data rate over 100Gbps should be provided by exploiting higher frequency bands in addition to millimeter-wave bands such as 28GHz. The higher frequency bands are assumed to be millimeter wave and terahertz wave where the extreme wider bandwidth is available compared with 5G, and hence 6G needs to promote research and development to exploit so-called terahertz wave targeting the frequency from 100GHz to 300GHz. In the terahertz wave, there are fundamental issues that rectilinearity and pathloss are higher than those in the 28GHz band. In order to solve these issues, it is very important to clarify channel characteristics of the terahertz wave and establish a channel model, to advance 6G radio access technologies suitable for the terahertz wave based on the channel model, and to develop radio-frequency device technologies for such higher frequency bands. This paper introduces a direction of studies on 6G radio access technologies to explore the higher frequency bands and technical issues on the device technologies, and then basic computer simulations in 100Gbps transmission using 100GHz band clarify a potential of extreme high data rate over 100Gbps.

  • Learning Dynamic Systems Using Gaussian Process Regression with Analytic Ordinary Differential Equations as Prior Information

    Shengbing TANG  Kenji FUJIMOTO  Ichiro MARUTA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1440-1449

    Recently the data-driven learning of dynamic systems has become a promising approach because no physical knowledge is needed. Pure machine learning approaches such as Gaussian process regression (GPR) learns a dynamic model from data, with all physical knowledge about the system discarded. This goes from one extreme, namely methods based on optimizing parametric physical models derived from physical laws, to the other. GPR has high flexibility and is able to model any dynamics as long as they are locally smooth, but can not generalize well to unexplored areas with little or no training data. The analytic physical model derived under assumptions is an abstract approximation of the true system, but has global generalization ability. Hence the optimal learning strategy is to combine GPR with the analytic physical model. This paper proposes a method to learn dynamic systems using GPR with analytic ordinary differential equations (ODEs) as prior information. The one-time-step integration of analytic ODEs is used as the mean function of the Gaussian process prior. The total parameters to be trained include physical parameters of analytic ODEs and parameters of GPR. A novel method is proposed to simultaneously learn all parameters, which is realized by the fully Bayesian GPR and more promising to learn an optimal model. The standard Gaussian process regression, the ODE method and the existing method in the literature are chosen as baselines to verify the benefit of the proposed method. The predictive performance is evaluated by both one-time-step prediction and long-term prediction. By simulation of the cart-pole system, it is demonstrated that the proposed method has better predictive performances.

101-120hit(3179hit)