The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tunnel transistor(3hit)

1-3hit
  • Multiple-Valued T-Gate Based on Multiple Junction Surface Tunnel Transistor

    Tetsuya UEMURA  Toshio BABA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E85-C No:7
      Page(s):
    1486-1490

    A novel multiple-valued transfer gate (T-gate) consisting of multiple-junction surface tunnel transistors (MJSTTs) and hetero-junction FETs (HJFETs) was developed and its operation was confirmed by both simulation and experiment. The number of the devices required to form the T-gate can be drastically reduced because of the high functionality of the MJSTT; namely only three MJSTTs and three HJFETs are required to fabricate the three-valued T-gate. This number of transistors is less than half that of a conventional circuit. The fabricated circuit exhibited a basic T-gate operation with various logic functions. Furthermore, only one T-gate is needed to form a multiple-valued D-flip-flop (D-FF) circuit.

  • Surface Tunnel Transistors with Multiple Interband Tunnel Junctions

    Toshio BABA  Tetsuya UEMURA  

     
    PAPER-Quantum Devices

      Vol:
    E80-C No:7
      Page(s):
    875-880

    New functional surface tunnel transistors (STTs) with multiple interband-tunnel-junctions in a symmetric source-to-drain structure are proposed to reduce the number of fabrication steps and to increase functionality. These devices have p+/n+ interband tunnel junctions in series between a p+ source and a p+ drain through n+ channels. We successfully fabricated GaAs-based multiple-junction STTs (MJ-STTs) using molecular-beam epitaxy regrowth. This fabrication method eliminates the need for two of the photo-masks in the conventional process for asymmetric planar STTs. In the preliminary experiments using multiple-junction p+/n+ diodes, we found that the peak-voltage increment in negative-differential-resistance (NDR) characteristics due to the reverse-biased tunnel junction in negligible, while the first-peak voltage is roughly proportional to the number of forward-biased tunnel junctions. Moreover, the number of NDR characteristics are completely determined by the number of tunnel junctions. The fabricated STTs with multiple junctions, up to eight junctions, exhibited clear transistor operation with multiple NDR characteristics, which were symmetric with the drain bias. These results indicate that any number of gate-controlled NDR characteristics can be realized in MJ-STTs by using an appropriate number of tunnel junctions in series. In addition, as an example of a functional circuit using MJ-STTs, we implemented a tri-stable circuit with a four-junction STT and a load resistor connected in series. The tri-stable operation was confirmed by applying a combination of a reset pulse and a set pulse for each stable point.

  • Characterization for Negative Differential Resistance in Surface Tunnel Transistors

    Tetsuya UEMURA  

     
    PAPER

      Vol:
    E77-C No:9
      Page(s):
    1444-1449

    Gate-controlled negative differential resistance (NDR) due to interband tunneling has been observed at room temperature in a Surface Tunnel Transistor (STT). The STT consists of a highly degenerate p+-drain, an n+-doped channel with an insulated gate, and an n+-source connected to the channel. To demonstrate application as a functional device, a bistable circuit consisting of only one STT and one load resistor was organized and its operation was confirmed. The obtained valley current in the NDR characteristics of the STT, however, is relatively large and limits the device performance. In order to clarify the origin of the valley current, we fabricated p+-n+ tunnel diodes in which growth interruption was done at the pn junction, and investigated the dependence of the NDR characteristics on both the impurity concentration at the regrown interface and the temperature. These measurements indicate that the valley current is mainly caused by the excess tunneling current through traps formed by the residual oxygen at the regrown interface.