The search functionality is under construction.

Keyword Search Result

[Keyword] turbo code(86hit)

1-20hit(86hit)

  • Free Space Optical Turbo Coded Communication System with Hybrid PPM-OOK Signaling

    Ran SUN  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    287-294

    For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.

  • Novel Method to Watermark Anonymized Data for Data Publishing

    Yuichi NAKAMURA  Yoshimichi NAKATSUKA  Hiroaki NISHI  

     
    PAPER-Privacy

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1671-1679

    In this study, an anonymization infrastructure for the secondary use of data is proposed. The proposed infrastructure can publish data that includes privacy information while preserving the privacy by using anonymization techniques. The infrastructure considers a situation where ill-motivated users redistribute the data without authorization. Therefore, we propose a watermarking method for anonymized data to solve this problem. The proposed method is implemented, and the proposed method's tolerance against attacks is evaluated.

  • Permutation Polynomials of Higher Degrees for Turbo Code Interleavers

    Jonghoon RYU  

     
    LETTER

      Vol:
    E95-B No:12
      Page(s):
    3760-3762

    Permutation polynomial based interleavers over integer rings, in particular quadratic permutation polynomials have been widely studied. In this letter, higher degree permutation polynomials for interleavers are considered for interleavers and permutation polynomials superior to quadratic permutation polynomials are found for some lengths.

  • Analysis of Parallel Decodable Turbo Codes

    Orhan GAZ  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:5
      Page(s):
    1584-1591

    Turbo codes suffer from high decoding latency which hinders their utilization in many communication systems. Parallel decodable turbo codes (PDTCs) are suitable for parallel decoding and hence have low latency. In this article, we analyze the worst case minimum distance of parallel decodable turbo codes with both S-random interleaver and memory collision free Row-Column S-random interleaver. The effect of minimum distance on code performance is determined through computer simulations.

  • Importance Sampling for Turbo Codes over Slow Rayleigh Fading Channels

    Takakazu SAKAI  Koji SHIBATA  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:5
      Page(s):
    982-985

    This study shows a fast simulation method of turbo codes over slow Rayleigh fading channels. The reduction of the simulation time is achieved by applying importance sampling (IS). The conventional IS method of turbo codes over Rayleigh fading channels focuses only on modification of additive white Gaussian noise (AWGN) sequences. The proposed IS method biases not only AWGNs but also channel gains of the Rayleigh fading channels. The computer runtime of the proposed method is about 1/5 of that of the conventional IS method on the evaluation of a frame error rate of 10-6. When we compare with the Monte Carlo simulation method, the proposed method needs only 1/100 simulation runtime under the condition of the same accuracy of the estimator.

  • Efficient List Extension Algorithm Using Multiple Detection Orders for Soft-Output MIMO Detection

    Kilhwan KIM  Yunho JUNG  Seongjoo LEE  Jaeseok KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:3
      Page(s):
    898-912

    This paper proposes an efficient list extension algorithm for soft-output multiple-input-multiple-output (soft-MIMO) detection. This algorithm extends the list of candidate vectors based on the vector selected by initial detection, in order to solve the empty-set problem, while reducing the number of additional vectors. The additional vectors are obtained from multiple detection orders, from which high-quality soft-output can be generated. Furthermore, a method to reduce the complexity of the determination of the multiple detection orders is described. From simulation results for a 44 system with 16- and 64-quadrature amplitude modulations (QAM) and rate 1/2 and 5/6 duo-binary convolutional turbo code (CTC), the soft-MIMO detection to which the proposed list extension was applied showed a performance degradation of less than 0.5 dB at bit error rate (BER) of 10-5, compared to that of the soft-output maximum-likelihood detection (soft-MLD) for all code rate and modulation pairs, while the complexity of the proposed list extension was approximately 38% and 17% of that of an existing algorithm with similar performance in a 44 system using 16- and 64-QAM, respectively.

  • Efficient Address Generation for Permutation Polynomial Based Interleavers over Integer Rings

    Jonghoon RYU  

     
    LETTER-Coding Theory

      Vol:
    E95-A No:1
      Page(s):
    421-424

    Permutation polynomial based interleavers over integer rings have recently received attention for their excellent channel coding performance, elegant algebraic properties and simplicity of implementation. In this letter, it is shown that permutation polynomial based interleavers of practical interest is decomposed into linear permutation polynomials. Based on this observation, it is shown that permutation polynomial based interleavers as well as their inverses can be efficiently implemented.

  • Iterations of FB-MSDSD and Turbo Codes over the Correlated Flat Fading Channel

    Chien-Sheng CHEN  Ching-Chi LO  

     
    LETTER

      Vol:
    E94-A No:12
      Page(s):
    2780-2786

    Over a correlated flat fading channel, multiple-symbol differential detection can enhance the performance of coded differential phase shift keying (DPSK) systems but with exponential complexity. For iterative decoding schemes, the soft-input soft-output (SISO) multiple-symbol differential sphere decoding (MSDSD) can offer suboptimal performance and its complexity is quadratic with detection length. To further reduce the complexity, this paper proposes a Forward/Backward MSDSD (FB-MSDSD) for coded DPSK systems. The key idea is that the detection interval is split into two subintervals which are processed in the forward and backward directions respectively. Simulation results show that the proposed scheme has almost the same performance and lower complexity when compared with the SISO-MSDSD scheme with the same detection length.

  • Fast Simulation Method for Turbo Codes over Additive White Class A Noise Channel

    Takakazu SAKAI  Koji SHIBATA  

     
    LETTER-Coding Theory

      Vol:
    E94-A No:3
      Page(s):
    1034-1037

    This study shows a fast simulation method for turbo codes over an additive white class A noise (AWAN) channel. The reduction of the estimation time is achieved by applying importance sampling (IS) which is one of the variance reduction simulation methods. In order to adapt the AWAN channel, we propose a design method of a simulation probability density function (PDF) utilized in IS. The proposed simulation PDF is related to the Bhattacharyya bound to evaluate wider area of the signal space than the conventional method. Since the mean translation method, which is a conventional design method of the simulation PDF used in IS, is optimized for an additive white Gaussian noise channel, the evaluation time of the error performance of turbo codes over the AWAN channel can not be reduced. To evaluate BER of 10-8, the simulation time of the proposed method can be reduced to 1/104 under the condition of the same accuracy of the traditional Monte Carlo simulation method.

  • Performance Bound for Turbo-Coded 2-D FSO/CDMA Systems over Atmospheric Turbulence Channels

    Anh T. PHAM  Tu A. LUU  Ngoc T. DANG  

     
    LETTER

      Vol:
    E93-A No:12
      Page(s):
    2696-2699

    We propose Turbo-coded two-dimensional (2-D) free-space optical (FSO) CDMA systems for broadband access networks. The performance bound for the proposed system over atmospheric turbulence channels is obtained considering multiple-access interference (MAI) and receiver noise. The results show that the proposed system offers a better performance than that of previously proposed ones. Also, it has a better tolerance to the atmospheric turbulence and the increase in the number of users.

  • Experimental Results on Simple Distributed Cooperative Transmission Scheme with Visible Light Communication

    Takaya YAMAZATO  Koji NAKAO  Hiraku OKADA  Masaaki KATAYAMA  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2959-2962

    We consider a distributed transmission of data packet to a sink where the distance of a sensor node to a sink is much longer than the maximum communication range of each sensor node. We give a simple modification to the transmitter, i.e., multiplication of random phase before the transmission. Thanks to Turbo Code, it is possible to extend the transmission range as the received amplitude varies symbol by symbol for our scheme while whole data packet may be lost for the conventional scheme. In this letter, we report the experimental results of our scheme equivalently developed using visible light communication.

  • A Novel Turbo Coded Modulation Scheme for Deep Space Optical Communications

    Sangmok OH  Inho HWANG  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:5
      Page(s):
    1260-1263

    A novel turbo coded modulation scheme, called the turbo-APPM, for deep space optical communications is proposed. The proposed turbo-APPM is a serial concatenation of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to lower the bit error rate. At the receiver, the joint iterative decoding is performed between the inner decoder and the outer turbo decoder. In the outer decoder, local iterative decoding for turbo codes is conducted. Simulation results are presented showing that the proposed turbo-APPM outperforms all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM reported in the literature.

  • Optimized 16-QAM Constellation for Binary Turbo Codes

    Keunhyung LEE  Donghoon KANG  Hyobae PARK  Wangrok OH  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:2
      Page(s):
    381-384

    It is well known that the performance of turbo codes can be improved by optimizing the energy allocation on coded symbols. Based on this fact, we propose an optimized 16-quadrature amplitude modulation (QAM) constellation for binary turbo codes. In the proposed scheme, the energy allocated on turbo coded symbols is optimized by modifying the constellation of QAM. The proposed 16-QAM constellation combined with a binary turbo code offers better coding gain compared to the conventional combination of binary turbo code and QAM.

  • Concurrent Algorithm and Hardware Implementation for Low-Latency Turbo Decoder Using a Single MAP Decoder

    Ya-Cheng LU  Erl-Huei LU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E93-B No:1
      Page(s):
    1-8

    In order to reduce the iterative decoding delay of convolutional turbo codes, this paper presents a concurrent decoding algorithm for the hardware implementation of turbo convolutional decoders. Different than a general turbo code, the hardware turbo decoder based on the proposed algorithm can update the priori information of message for each component code in a bit-by-bit manner as soon as it is generated by the other component code. The two component codes in a turbo code can thus be decoded concurrently, by using a single MAP decoder, subsequently reducing the decoding latency by approximately half while maintaining the bit error rate performance and a comparable hardware complexity, as a general turbo decoder.

  • Decoding of Separately Encoded Multiple Correlated Sources Transmitted over Noisy Channels

    Kentaro KOBAYASHI  Takaya YAMAZATO  Masaaki KATAYAMA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2402-2410

    We propose an iterative channel decoding scheme for two or more multiple correlated sources. The correlated sources are separately turbo encoded without knowledge of the correlation and transmitted over noisy channels. The proposed decoder exploits the correlation of the multiple sources in an iterative soft decision decoding manner for joint detection of each of the transmitted data. Simulation results show that achieved performance for the more than two sources is also close to the Shannon and Slepian-Wolf limit and large additional SNR gain is obtained in comparison with the case of two sources. We also verify through simulation that no significant penalty results from the estimation of the source correlation in the decoding process and the code with a low error floor achieves good performance for a large number of the correlated sources.

  • Two Bit Quantization for Turbo Decoder Extrinsic Information with Parameter Reset

    Do-Sik YOO  Jongtae LIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:8
      Page(s):
    2727-2730

    In this letter, we propose a two-bit representation method for turbo decoder extrinsic information based on bit error count minimization and parameter reset. We show that the performance of the proposed system approaches that of the full precision decoder within 0.17 dB and 0.48 dB at 1 % packet error rate for packet lengths of 500 and 10,000 information bits. The idea of parameter reset we introduce can be used not only in turbo decoder but also in many other iterative algorithms.

  • A Switching Type-II Hybrid ARQ Scheme with RCPT Codes

    Ju-Ya CHEN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:8
      Page(s):
    2723-2726

    A switching type-II hybrid ARQ scheme with rate compatible punctured turbo (RCPT) codes is proposed in this letter. The proposed scheme combines three retransmission schemes by minimizing a cost function that yields a compromise between throughput and delay time. The performance of the proposed algorithm is evaluated by computer simulations. Compared with conventional hybrid ARQ algorithms, the proposed algorithm can offer almost the same throughput performance with smaller time delay.

  • Performance Comparison between Turbo Code and Rate-Compatible LDPC Code for Evolved UTRA Downlink OFDM Radio Access

    Naoto OKUBO  Nobuhiko MIKI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1504-1515

    This paper compares the turbo code and rate-compatible low-density parity-check (LDPC) codes based on the block error rate (BLER) performance and decoding complexity in order to clarify which channel coding scheme is most appropriate for the channel coding scheme in the OFDM based Evolved UTRA (E-UTRA) downlink. Simulation results and the decoding complexity analysis show that although the Rate-Compatible/Quasi-Cyclic (RC/QC)-LDPC code employing an offset layered belief propagation (BP) method can reduce the computational complexity by approximately 30% for the channel coding rate of R ≥ 1/2, the required average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) is degraded by approximately 0.2-0.3 dB for R = 1/3, 1/2 and 3/4 compared to that for the turbo code. Moreover, the decoding complexity level of the RC/QC-LDPC code with the δ-min algorithm is almost the same or higher than that for the turbo code with a slight degradation in the required received Eb/N0. Although the decoding complexity level of the ZigZag code is lower than that of the turbo code, the code brings about a distinct loss in the required average received Eb/N0 of approximately 0.4 dB. Finally, the turbo Single Parity Check (SPC) code improves the BLER performance compared to the ZigZag code, i.e., achieves almost the same BLER performance as that for the turbo code, at the cost of a two-fold increase in the decoding complexity. As a result, we conclude that the turbo code with a contention free interleaver is more promising than the LDPC codes for prioritizing the achievable performance over complexity and as the channel coding scheme for the shared data channel in the E-UTRA.

  • A Partial IR Hybrid ARQ Scheme Using Rate-Compatible Punctured LDPC Codes in an HSDPA System

    Chang-Rae JEONG  Hyo-Yol PARK  Kwang-Soon KIM  Keum-Chan WHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:2
      Page(s):
    604-607

    In this paper, an efficient partial incremental redundancy (P-IR) scheme is proposed for an H-ARQ using block type low density parity check (B-LDPC) codes. The performance of the proposed P-IR scheme is evaluated in an HSDPA system using IEEE 802.16e B-LDPC codes. Simulation results show that the proposed H-ARQ using IEEE 802.16e B-LDPC codes outperforms the H-ARQ using 3GPP turbo codes.

  • Error Correction Using Time-Dependent Correlation and Transmit Power Control in Sensor Networks

    Suguru DOKI  Hiraku OKADA  Kenichi MASE  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3426-3433

    In a sensor network, a certain area or environment are observed by a lot of distributed sensor nodes and a sink collects data observed by sensor nodes. The observed data sequences that sensor nodes generate may have space- and/or time-dependent correlation. This correlation is regarded as redundant information and can be used for channel error correction by joint decoder using correlation. In this paper, we propose the joint decoding scheme using the time-dependent correlation consisting of the consecutive data sequences generated by a sensor node. We also propose a power control scheme using the time-dependent correlation for reduction in energy consumption. We evaluate the packet error rate and the energy consumption ratio, and clarify the effect of our proposed schemes.

1-20hit(86hit)