The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] vision(776hit)

561-580hit(776hit)

  • A Novel Optical Add/Drop Multiplexer Utilizing Free Spectral Range Periodicity of Arrayed Waveguide Grating Multiplexer

    Masahide MIYACHI  Shigeru OHSHIMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1205-1210

    We propose a novel optical add/drop multiplexer (OADM) utilizing free spectral range (FSR) periodicity of an arrayed-waveguide multiplexer (AWG). In this OADM, wavelength-division multiplex (WDM) signal is multiplexed and/or de-multiplexed in two steps. Power penalty due to coherent crosstalk is drastically reduced compared with that of conventional OADM where AWG multiplexers are opposite to each other. The calculated power penalty due to the coherent crosstalk is about 0.7 dB after the 16 OADMs in the case of 128 wavelengths. It was confirmed through a computer simulation that more than one hundred channels at 10 Gbps data rate could be accommodated in an OADM network with 16 nodes. These results show that the OADM network with over 1 Tbps capacity and 16 nodes could be constructed.

  • Superior Noise Performance and Wide Dynamic Range Erbium Doped Fiber Amplifiers Employing Variable Attenuation Slope Compensator

    Haruo NAKAJI  Motoki KAKUI  Hitoshi HATAYAMA  Chisai HIROSE  Hiroyuki KURATA  Masayuki NISHIMURA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1224-1230

    In order to realize automatic-level-controlled (ALC) erbium doped fiber amplifiers (EDFAs) with both wide dynamic range and good noise performance, we propose EDFAs employing the automatic power control (APC) scheme and a variable attenuation slope compensator (VASC). The VASC consists of two asymmetrical Mach-Zehnder interferometers (MZIs) concatenated in series and thermo optic (TO) heaters are attached to the arms of each MZIs. By adjusting the electric power supplied to the TO heaters, an almost linear attenuation slope can be varied by plus minus 5 dB or more over the operational wavelength band of 30 nm. The EDFA employing the APC scheme and the VASC has exhibited a dynamic range as large as 20 dB with the output power variation as small as 0.7 dB, which is as good as that of the EDFA employing the APC scheme and a variable optical attenuator (VOA). The noise figure (NF) of the EDFA employing the VASC was degraded about 4.1 dB with increasing the input power by 20 dB, while it was degraded about 7.3 dB with increasing the input power by only 15 dB in the EDFA employing the VOA. The EDFA employing the VASC can realize the ALC operation over a wider dynamic range with reduced noise figure degradation. In the EDFA employing the VASC, the power excursion was suppressed to less than 1.1 dB, when the input signal level was changed between -23 dBm/ch and -18 dBm/ch with the rise/fall time of 8 ms.

  • On Detecting Digital Line Components in a Binary Image

    Tetsuo ASANO  Koji OBOKATA  Takeshi TOKUYAMA  

     
    PAPER

      Vol:
    E84-A No:5
      Page(s):
    1120-1129

    This paper addresses the problem of detecting digital line components in a given binary image consisting of n black dots arranged over N N integer grids. The most popular method in computer vision for this purpose is the one called Hough Transform which transforms each black point to a sinusoidal curve to detect digital line components by voting on the dual plane. We start with a definition of a line component to be detected and present several different algorithms based on the definition. The one extreme is the conventional algorithm based on voting on the subdivided dual plane while the other is the one based on topological walk on an arrangement of sinusoidal curves defined by the Hough transform. Some intermediate algorithm based on half-planar range counting is also presented. Finally, we discuss how to incorporate several practical conditions associated with minimum density and restricted maximality.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    629-638

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

  • Demonstration of Fast Restorable All-Optical WDM Network

    Jong Kwon KIM  Ho Chul JI  Hwan Seok CHUNG  Chul Han KIM  Seung Kyun SHIN  Duck Hwa HYUN  Yun Chur CHUNG  

     
    PAPER-Communication Networks

      Vol:
    E84-B No:5
      Page(s):
    1119-1126

    We report on the demonstration of a fast restorable all-optical WDM network. This network consisted of four 44 optical cross-connects (OXC's) and four in-line optical amplifiers. These OXC's monitored not only the status of various network elements and quality of optical signals but also the optical path of each channel continuously. Thus, this network could automatically identify the causes of most network failures. For the fast restoration, we implemented these OXC's by using thermo-optic polymer switches (switching time: < 1.5 ms) and used hardware interrupt when LOS was detected. In addition, we used a pre-planned routing table made by using a simple heuristic routing and wavelength assignment algorithm. The results show that this network could be restored from any single link failure within 6 ms even when the restoration path was 400 km.

  • Experimental Studies of Switching Characteristics for All-Optical Demultiplexer Module

    Rainer HAINBERGER  Yuki KOMAI  Yasuyuki OZEKI  Masahiro TSUCHIYA  Kashiko KODATE  Takeshi KAMIYA  

     
    PAPER-Device

      Vol:
    E84-C No:3
      Page(s):
    358-363

    By combining the technology of all-optical saturable absorbers and the diffractive optics, a scheme of all-optical time division demultiplexing module is investigated. Following authors' proposal, design, test fabrication of the optical platform in the previous paper, this paper focuses on the characterization of switching performance. Using a multiple quantum well saturable absorber of InGaAs/InAlAs composition, and gain switched semiconductor laser pulses of 25 ps pulse width, the switching function was demonstrated experimentally at wavelength of 1.55 µm. The switching on-off ratio was compared among 4 lens configuration, 2 lens configuration (2L) and free space, collinear geometry. No degradation was observed in the case of 2 lens configuration in comparison to collinear illumination. Thus the feasibility of all-optical switch module with power efficiency and high speed is predicted, under the assumption of the progress in sub-micron lithography.

  • Low Power Current-Cut Switched-Current Matched Filter for CDMA

    Kenji TOGURA  Hiroyuki NAKASE  Koji KUBOTA  Kazuya MASU  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E84-C No:2
      Page(s):
    212-219

    We have proposed a current-cut switched-current matched filter (CC-SIMF) for direct-sequence code-division multiple-access (DS-CDMA). The 256-chip CC-SIMF can achieve low power consumption of less than 10 mW under high-speed operation of more than 16 Mcps. To reduce the current transfer error accumulation, we propose a parallel SIMF configuration. A 128-chip SIMF using 0.8-µm Complementally Metal Oxide Semiconductor (CMOS) process has been designed and fabricated. Optimization of the current memory cell structure has been described. The correlation operation at 16 Mcps has been obtained using a 128-chip orthogonal m-sequence. The code phase separation performance for path diversity has been clearly observed. The power consumption has been significantly reduced using the current-cut method.

  • Performance of OFDM/MDPSK over Time-Variant Multipath Rayleigh Fading Channels

    JeongWoo JWA  HwangSoo LEE  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:2
      Page(s):
    337-340

    In this paper, a new expression is derived for the bit error rate (BER) performance of Gray-encoded MDPSK for M=2 and 4 in orthogonal frequency division multiplexing (OFDM) systems over time-variant and frequency-selective Rayleigh fading channels. We assume that the guard time is sufficiently larger than the delay spread to solve the intersymbol interference (ISI) problem on the demodulated OFDM signal. In this case, the performance depends on the Doppler spread of fading channel. The closed form expression for the bit error probability of MDPSK/OFDM extended from the result in [5] shows that the BER performance of MDPSK is determined by (N + NG ) fD Ts where N is the number of subchannels, NG the length of the guard interval, fD the maximum Doppler frequency, and Ts the sampling period. The theoretical analysis results are confirmed by computer simulations for DPSK and QDPSK signals.

  • Experimental Evaluation of Interference Canceling Equalizer (ICE) for a TDMA Mobile Communication System

    Hitoshi YOSHINO  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:2
      Page(s):
    228-237

    This paper describes the results of a series of laboratory experiments for performance evaluations of our proposed Maximum Likelihood Sequence Estimation (MLSE) based interference canceller, the Interference Canceling Equalizer (ICE), which can cancel both co-channel interference (CCI) and inter-symbol interference (ISI). To verify the feasibility of ICE for the Japanese cellular communications system, a standard of which has been released under the name of Personal Digital Cellular (PDC) system, a prototype system was constructed using 27 TI TMS320C40 Digital Signal Processor (DSP) chips. The ICE prototype works in real-time on the PDC air interface, major specifications of which are π/4 QDPSK 21 k symbols/s 3-channel time-division multiple-access (TDMA). Two-branch diversity reception is used to enhance the signal detection performance of ICE. In the experiments, BER performances were evaluated using the prototype system. Under a single-path Rayleigh fading and a single CCI condition, the ICE receiver attains the BER of less than 310-2 with the negative values of the average CIR: for fD = 5 Hz and 40 Hz, the average CIR more than -20 dB and -10 dB, respectively. Under a double-path Rayleigh fading and a single CCI condition, the ICE receiver attains the BER of less than 1.510-2 with the negative values of the average CIR: for fD = 5 Hz and 40 Hz, the average CIR more than -20 dB and -10 dB, respectively. The laboratory test results suggest that the ICE receiver has potential for system capacity enhancement.

  • Modified Gaussian Analysis Method of the OFDM System with the Frequency Offset

    Hongku KANG  Hyunjae KIM  Wooncheol HWANG  Kiseon KIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:2
      Page(s):
    213-219

    We evaluate the BER performance of the OFDM system with the one-tap equalizer bank under the two-ray multipath channel with the frequency offset by the simple Gaussian analysis method and by a proposed modified Gaussian analysis method. The proposed analysis method considers two adjacent inter-channel interferences, separately, and models the other inter-channel interferences as a Gaussian noise. It is shown that the proposed analysis method affords much closer results to the simulations than those by the simple Gaussian analysis method, when the frequency offset exists.

  • Access Control Model with Provisional Actions

    Michiharu KUDO  Satoshi HADA  

     
    PAPER

      Vol:
    E84-A No:1
      Page(s):
    295-302

    In most access control systems, authorization is specified using binary decisions, "yes" or "no," to the access requests resulting in access being permitted or denied respectively. We argue that emerging Internet applications require that this binary decision be extended to "allow access provided some actions are taken. " We propose the notion of provisional actions that specifies the necessary actions to be performed in addition to the binary decision and introduce an access control model for it. We also provide an administrative model for policy management purpose.

  • Blocking Models of All-Optical WDM Networks under Distributed Wavelength Assignment Policies

    Ssang-Soo LEE  Chang-Hyung LEE  Seung-Woo SEO  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E84-B No:1
      Page(s):
    17-25

    In this paper, we investigate the blocking characteristics of all-optical WDM (Wavelength-Division Multiplexing) networks under distributed wavelength assignment policies. For assigning wavelengths in a distributed manner, we consider two algorithms: random and locally-most-used algorithm. For a random wavelength assignment policy, we develop new blocking models of unidirectional/bidirectional ring networks based on the M/M/c/c queueing models under uniform/nonuniform traffic conditions. These models are shown to be more accurate than the previous blocking models since our approach considers the large traffic correlation among links in ring networks. We also analyze the blocking performance of the locally-most-used algorithm by comparing with that of the globally-most-used algorithm in fixed routing networks. We show that our analysis models match well with the simulation results in ring and mesh networks. Through the comparison with the previous centralized/distributed algorithms, it is demonstrated that the distributed locally-most-used algorithm is computationally efficient with good blocking performance.

  • Optical Frequency Division Multiplexed Transmission System Unified for Broadcasting and Communication Utilizing a Set of Fabry-Perot Etalons

    Mitsuhiro TATEDA  Minoru HIRAKAWA  Takashige OMATSU  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E84-B No:1
      Page(s):
    120-123

    A passive branched optical network unified for broadcasting and communication utilizing a set of Fabry-Perot etalons with different cavity lengths is proposed and its basic operation including thermal stability of broadcasting channel is demonstrated. It is confirmed that a high transmission frequency in common for a pair of fiber Fabry-Perot etalons is always found however environmental temperature changes.

  • Generalized Hypercube Structure with Shared Channels for a WDM Optical Network

    Seahyeon NAM  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:12
      Page(s):
    2585-2592

    A Generalized Hypercube Network (GHNet) with shared channels which requires only one fixed-wavelength transmitter and r(m-1) fixed-wavelength receivers per node is proposed. The proposed network topology reduces not only the number of transmitters per node but also the number of WDM channels required to service the same number of nodes compared with the GHNet with dedicated channels by sharing the available WDM channels, while it maintains the same channel efficiency as the GHNet with dedicated channels. The proposed network topology may be preferred in a situation where the number of available WDM channels and the cost of the transmitter may cause a major restriction on the lightwave network construction. For performance analysis, the network capacity and the mean queueing delay for the proposed network topology are obtained. Also, the performance measures of the proposed GHNet with shared channels are compared with those of the ShuffleNet with shared channels.

  • Adaptive Algorithm Based on Pilot-Channel for MMSE Multiuser Detection in Downlink CDMA

    Yi WANG  Jun WU  Weiling WU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E83-A No:11
      Page(s):
    2341-2347

    A novel adaptive algorithm based on pilot channel (PCA) for MMSE multiuser detection in downlink CDMA is proposed in this paper. This algorithm uses the information in pilot channel to compute the desired weight vector directly. Compared with conventional adaptive algorithms and blind algorithms, it does not require training sequences nor channel estimation. Analysis shows that the weight vector obtained by the PCA algorithm converges to the Wiener solution globally and its computational complexity is O(N2). Simulation results show that the PCA algorithm can adapt rapidly to the changing environment. The steady state performance can be enhanced by increasing the transmitted power in pilot channel, but is worse than that of conventional recursive least-square (RLS) algorithm in decision-directed mode. Also, performance of the adaptive MMSE detector is much better than that of conventional RAKE receiver.

  • Performance of Frequency-Division CDMA Systems for Channels with Frequency Selective Fading

    Masahiro FUJII  Makoto ITAMI  Kohji ITOH  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2093-2101

    This paper presents a new design of spread spectrum signals with the minimally sufficient dimension from the view point of frequency diversity. Letting the signature signal duration and the bandwidth be denoted by T and B, respectively, we can nominally represent a signature signal of either Direct Sequence (DS) or MultiCarrier (MC) spread spectrum system as the sum of N=BT sinusoidal signal units with their frequencies separated by 1/T or its multiples. In our design,assuming the maximum expected channel delay spread σd « T as usual, one signature signal viewed in the frequency domain is made up of the minimum number K 2πσdB of sinusoidal signal units which are arranged so as there is placed at least one unit in coherence bandwidth 1/(2πσd) in which the fading channel transfer function has strong correlation. Although the signature signal does not make use of all the units in the given frequency domain as in the ordinary spread spectrum systems, but uses only skipped units, it can be shown that almost the same frequency diversity effect is attained. And it is also shown that the immunity to the external interfering signals is by no means inferior. If every L=N/K T/(2πσd) consecutive sinusoidal signal units are assigned to the K signal units of a signature signal, L different signature signals are simultaneously available mutually orthogonal when the synchronous demodulation is performed in the same T period. We call each of the orthogonal sinusoidal signal sets a Frequency Devision (FD) signal set. Now, CDMA can be independently realized on each of the L FD signal sets provided the operation is synchronous or quasi-synchronous with respect to the symbol demodulation (or signature) period. Partitioning the simultaneous users among the FD sets, it is possible to decrease the number of CDMA users to be processed, retaining the total number of simultaneous users. Owing to this effect, the multiple access performance for the FD/CDMA system is shown to be superior to that of the ordinary DS or MC/CDMA system, assuming matched filter reception based on the complete estimation of the channel characteristics for the both cases. The decrease of the number of CDMA users per FD set makes it practical for the receiver to employ multiple access interference cancellation and even the maximum likelihood detection. Curiously, any FD signal set can be represented in the time domain as L repetition of a sequence with its period equal to K in the number of 1/B duration time chips.

  • Hand Gesture Recognition Using T-CombNET: A New Neural Network Model

    Marcus Vinicius LAMAR  Md. Shoaib BHUIYAN  Akira IWATA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:11
      Page(s):
    1986-1995

    This paper presents a new neural network structure, called Temporal-CombNET (T-CombNET), dedicated to the time series analysis and classification. It has been developed from a large scale Neural Network structure, CombNET-II, which is designed to deal with a very large vocabulary, such as Japanese character recognition. Our specific modifications of the original CombNET-II model allow it to do temporal analysis, and to be used in large set of human movements recognition system. In T-CombNET structure one of most important parameter to be set is the space division criterion. In this paper we analyze some practical approaches and present an Interclass Distance Measurement based criterion. The T-CombNET performance is analyzed applying to in a practical problem, Japanese Kana finger spelling recognition. The obtained results show a superior recognition rate when compared to different neural network structures, such as Multi-Layer Perceptron, Learning Vector Quantization, Elman and Jordan Partially Recurrent Neural Networks, CombNET-II, k-NN, and the proposed T-CombNET structure.

  • Fault Tolerant Crossconnect and Wavelength Routing in All-Optical Networks

    Chuan-Ching SUE  Sy-Yen KUO  Yennun HUANG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2278-2293

    This paper proposes a fault tolerant optical crossconnect (FTOXC) which can tolerate link, channel, and internal optical switch failures via spare optical channels, extra input/output (I/O) ports for an optical switch, and associated wavelength converters. It also proposes a fault tolerant wavelength routing algorithm (FTWRA) which is used in the normal and the restored state. The FTOXC and FTWRA can be applied to any all-optical network and can recover many types of failures. FTOXC can configure the number of working and spare channels in each output link based on the traffic demand. Two formulations in this paper can be used to determine the optimal settings of channels. A global optimal setting of working and spare channels in each link can be found by formulating the problem as an integer linear program (ILP). In addition, the number of working and spare channels in each link can be dynamically adjusted according to the traffic loads and the system reliability requirements. The tradeoff between these two conflicting objectives is analyzed by the Markov decision process (MDP).

  • Wavelength-Division Multiplexing Metropolitan Area Network Architecture with a "Dual Ring" Configuration

    Shiro RYU  Joichi MORI  

     
    LETTER

      Vol:
    E83-B No:10
      Page(s):
    2368-2369

    A "dual-ring" network configuration is proposed in wavelength-division multiplexing (WDM) metropolitan area network (MAN). In the proposed architecture, a "sub-ring" using two fibers is added to the existing metropolitan WDM ring for flexible and cost effective addition of new nodes.

  • A Comparative Study of Mesh and Multi-Ring Designs for Survivable WDM Networks

    Lunchakorn WUTTISITTIKULKIJ  Charoenchai BAWORNTUMMARAT  Thanyaporn IAMVASANT  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2270-2277

    In this paper, two distinct optical network design approaches, namely mesh and multi-ring, for survivable WDM networks are investigated. The main objective is to compare these two design approaches in terms of network costs so that their merits in practical environments can be identified. In the mesh network design, a new mathematical model based on integer liner programming (ILP) and a heuristic algorithm are presented for achieving a minimal cost network design. In the multi-ring network design, a heuristic algorithm that can be applied to large network problems is proposed. The influence of wavelength conversion and the number of wavelengths multiplexed in a fiber on system designs are also discussed. Based on the simulation results, the redundancy quantities required for full protection in multi-ring approach are significantly larger in comparison to the minimal cost mesh counterpart.

561-580hit(776hit)