The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] vision(776hit)

641-660hit(776hit)

  • A Practical Automated Path Provisioning Method Reducing Restoration Time

    Daisuke TANIGUCHI  Takeshi NOJIMA  Toshio KOGA  Fukashi KAMIKAWA  

     
    PAPER-Network Design, Operation, and Management

      Vol:
    E81-B No:12
      Page(s):
    2495-2502

    In this paper, we describe a routing method for path on SDH Network with digital cross-connect control, which is implemented in an automated path provisioning function. Excessive concentration of assigned time slots at particular links results in longer restoration time, which is needed to switch or reroute paths on failure link. We propose an optimization method to provision the shortest route considering deconcentration of time slots assigned on each link. After defining LP-based formulation for path routing, we carried out computer simulation study for restoration performance on sample networks, assuming each restoration process for paths on failure link is executed one after another. Mean restoration time by our proposed method has reduced to a great extent compared to a basic routing method. It has been proven that the proposed method can realize effective use of resources and faster restoration time, and can be utilized in commercial systems.

  • Space Division Multiple Access Considerations in CDMA Cellular Systems

    Pieter van ROOYEN  Michiel P. LOTTER  

     
    INVITED PAPER

      Vol:
    E81-A No:11
      Page(s):
    2251-2260

    Space Division Multiple Access (SDMA) will form an important part of the new Wideband Code Division Multiple Access (WCDMA) standard that will realize the Universal Mobile Telephone System (UMTS). This paper addresses a few issues of importance when SDMA techniques are used in a cellular CDMA system. Firstly, a brief overview of SDMA techniques are presented followed by a theoretical analysis of a SDMA/CDMA system. The analysis is focused on a single cell, multipath Rayleigh fading scenario with imperfect power control. As system performance measure Bit Error Rate (BER) is used to investigate the influence of user location, number of antennas and power control error. An important parameter in a SDMA system is the antenna array element spacing. In our analysis a Uniform Linear Array (ULA) is considered and a measure is defined to determine the optimal antenna element spacing in a CDMA cellular environment. Normally the mobile users in a cell are assumed to be uniformly distributed in cellular performance calculations. To reflect a more realistic situation, we propose a novel probability density function for the non-uniform distribution of the mobile users in the cell. It is shown that multipath and imperfect power control, even with antenna arrays, reduces the system performance substantially.

  • A Theoretical Analysis of the Synchronous SS-CSC/CDMA System

    Kouji OHUCHI  Hiromasa HABUCHI  Toshio TAKEBAYASHI  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2291-2297

    In this paper, the bit error rate (BER) performance of the Spread Spectrum communication with Constrained Spreading Code system is studied under the synchronous CDMA system. Particularly, BER considering the tracking error is derived by theoretical analysis. The synchronizing spreading sequence is employed to track the signals in the receiver. As the result, the BER performance is degraded by increasing the number of users. However, the BER performance can be improved by canceling the co-channel interference and by suppressing the cross-correlation value between the information spreading sequence and the synchronizing spreading sequence.

  • Automatic Defect Classification in Visual Inspection of Semiconductors Using Neural Networks

    Keisuke KAMEYAMA  Yukio KOSUGI  Tatsuo OKAHASHI  Morishi IZUMITA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:11
      Page(s):
    1261-1271

    An automatic defect classification system (ADC) for use in visual inspection of semiconductor wafers is introduced. The methods of extracting the defect features based on the human experts' knowledge, with their correlations with the defect classes are elucidated. As for the classifier, Hyperellipsoid Clustering Network (HCN) which is a layered network model employing second order discrimination borders in the feature space, is introduced. In the experiments using a collection of defect images, the HCNs are compared with the conventional multilayer perceptron networks. There, it is shown that the HCN's adaptive hyperellipsoidal discrimination borders are more suited for the problem. Also, the cluster encapsulation by the hyperellipsoidal border enables to determine rejection classes, which is also desirable when the system will be in actual use. The HCN with rejection achieves, an overall classification rate of 75% with an error rate of 18%, which can be considered equivalent to those of the human experts.

  • Optimal Estimation of Three-Dimensional Rotation and Reliability Evaluation

    Naoya OHTA  Kenichi KANATANI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:11
      Page(s):
    1247-1252

    We discuss optimal rotation estimation from two sets of 3-D points in the presence of anisotropic and inhomogeneous noise. We first present a theoretical accuracy bound and then give a method that attains that bound, which can be viewed as describing the reliability of the solution. We also show that an efficient computational scheme can be obtained by using quaternions and applying renormalization. Using real stereo images for 3-D reconstruction, we demonstrate that our method is superior to the least-squares method and confirm the theoretical predictions of our theory by applying bootstrap procedure.

  • Performance of a Multiple WDM Star Network with Grouping Property

    Wha Sook JEON  Dong Geun JEONG  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:11
      Page(s):
    2157-2167

    This paper proposes local lightwave networks with grouping property which are based on a wavelength division multiplexing (WDM). The proposed network is partitioned into several groups according to traffic volume between stations so that traffic is more likely to be within groups. The stations within a group are connected to a broadcast-and-select WDM network with star topology. For inter-group communication, a WDM network of each group is connected to another star-topology WDM network through a special station called a router. In the proposed network, intra-group communication is achieved by one hop and inter-group communication goes through multiple hops. We analyze the average hop number, the maximum throughput, and the mean packet delay of the proposed network and investigate its performance characteristics. Since the proposed network has the better performance as its grouping property strengthens, it is fit for local lightwave networks with the locality of traffic.

  • Reducing Clipping-Induced Distortion in an Optical Cable TV System by Using Carrier Phase Locking

    Takuya KURAKAKE  Mikio MAEDA  Yasuhiro ITO  Naoyoshi NAKAMURA  Kimiyuki OYAMADA  

     
    LETTER-Optical Communication

      Vol:
    E81-B No:10
      Page(s):
    1941-1943

    We propose a method of reducing laser-clipping-induced distortion in a subcarrier multiplexed (SCM) optical-cable TV system. This scheme reduces amplitude peaks of the SCM signal by controlling the phases of video carriers to prevent the clipping which occurs when these peaks fall below the threshold of a laser-diode. It is experimentally shown that using this method reduces the bit error rate in an AM-VSB / QAM hybrid optical-transmission system.

  • Determining Pose of Curved 3-D Objects Based on 2-D Contour Matching

    Kazuho ITO  Kyoichi TAKEUCHI  Yoshihiko SUZUKI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:10
      Page(s):
    1087-1094

    This paper addresses the problem of determining the 3-D pose of a curved rigid object from a single 2-D image. The surface of the object are assumed to be modeled with several patches, each of which be expressed by an implicit polynomial. Moreover, the sensed data are assumed to be the coordinates of those points that are on the image contours. Based on the idea of contour matching, the algorithm proposed computes the parameters defining the pose of the object, and achieves the segmentation of the sensed data and the recognition of the object.

  • Performance of Multi-Carrier Parallel Combinatory DS-CDMA System

    Seung Young PARK  Sang Boh YUN  Chung Gu KANG  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:9
      Page(s):
    1758-1769

    As a data transmission rate must be increased as required to support the future high-speed wireless communication systems under multipath fading, the conventional DS-CDMA scheme suffers considerably from an intensive processing requirement for the increased spreading rate to combat the inter-chip interference (ICI) and furthermore, from the intersymbol interference (ISI) as the symbol duration becomes less than the channel delay spread. In this paper, a multi-carrier parallel combinatory DS-CDMA (MC-PC-CDMA) scheme is considered as one possible variant access scheme to realize a bandwidth efficient transmission for high transmission rate while maintaining the beneficial features of the DS-CDMA scheme. This scheme combines the parallel combinatory signaling feature of the existing parallel combinatory CDMA (PC-CDMA) scheme with the orthogonal carrier multiplexing feature of multi-carrier modulation so as to improve the bandwidth efficiency and to reduce the self-interference among the parallel spreading sequences of each user, respectively. This particular system configuration also treats the previously proposed multi-carrier DS-CDMA systems as a special case. Our analysis of the bit error rate for the asynchronous CDMA system investigates the performance characteristics of the proposed system on varying design parameters, and shows the performance comparison with other types of multi-carrier DS-CDMA systems.

  • Design of Kronecker and Combination Sequences and Comparison of Their Correlation, CDMA and Information Security Properties

    Kari H. A. KARKKAINEN  Pentti A. LEPPANEN  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:9
      Page(s):
    1770-1778

    Two families of rapidly synchronizable spreading codes are compared using the same component codes. The influence of component code choice is also discussed. It is concluded that correlation, code-division multiple-access (CDMA) and information security (measured by the value of linear complexity) properties of Kronecker sequences are considerably better than those of Combination sequences. Combination sequences cannot be recommended for CDMA use unless the number of active users is few. CDMA performance of Kronecker sequences is almost comparable with that of linear pseudonoise (PN) code families of equal length when a Gold or Kasami code is used as the innermost code and the Barker code is used as the outermost code to guarantee satisfactory correlation and CDMA properties. Kronecker sequences possess a considerably higher value of linear complexity than those of the corresponding non-linear Geffe and majority logic type combination sequences. This implies they are highly non-linear codes due to the Kronecker product construction method. It is also observed that the Geffe type Boolean combiner resulted in better correlation and CDMA performance than with majority logic. The use of the purely linear exclusive-or combiner for considerable reduction of code synchronization time is not found recommendable although it results in good CDMA performance.

  • Planar Projection Stereopsis Method for Road Extraction

    Kazunori ONOGUCHI  Nobuyuki TAKEDA  Mutsumi WATANABE  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:9
      Page(s):
    1006-1018

    This paper presents a method which can effectively acquire free space on a plane for moving forward in safety by using height information of objects. This method can be applied to free space extraction on a road, and, in short, it is a road extraction method for an autonomous vehicle. Since a road area can be assumed to be a sequence of flat planes in front of a vehicle, it is effective to apply the inverse perspective projection model to the ground plane. However, conventional methods using this model have a drawback in that some areas on the road plane are wrongly detected as obstacle areas since these methods are sensitive to the error of the camera geometry with respect to the assumed plane. In order to overcome this drawback, the proposed approach named the Planar Projection Stereopsis (PPS) method supplies, to the road extraction method using the inverse perspective projection model, a contrivance for removing these erroneous areas effectively. Since PPS uses the inverse perspective projection model, both left and right images are projected to the road plane and obstacle areas are detected by examining the difference between these projected images. Because detected obstacle areas include a lot of erroneous areas, PPS examines the shapes of the obstacle areas and eliminates falsely detected areas on the road plane by using the following properties: obstacles whose heights are different from the road plane are projected to the shapes falling backward from the location where the obstacles touch the road plane; and the length of shapes falling backward depends on the location of obstacles in relation to the stereoscopic cameras and the height of obstacles in relation to the road plane. Experimental results for real road scenes have shown the effectiveness of the proposed method. The quantitative evaluation of the results has shown that on average 89. 3% of the real road area can be extracted and the average of the falsely extracted ratio is 1. 4%. Since the road area can be extracted by simple projection of images and subtraction of projected images from a set of stereo images, our method can be applied to real-time operation.

  • Gain-Flattened Hybrid Silica-Based Er-Doped Fiber Amplifiers Designed for More Than 25 nm Optical Bandwidth

    Motoki KAKUI  Tomonori KASHIWADA  Masayuki SHIGEMATSU  Masashi ONISHI  Masayuki NISHIMURA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1285-1292

    Wavelength-division multiplexing (WDM) transmission systems have been intensely researched in order to increase the transmission capacity. One of the most important key devices for this use is erbium-doped fiber amplifiers (EDFAs) which feature a flattened gain, a high pumping efficiency and a low noise figure (NF), simultaneously. To fulfill these requirements, hybrid silica-based EDFAs (EDSFAs) composed of Al codoped and P/Al codoped EDSFs have been proposed so far. They are also attractive from the viewpoint of productivity, reliability, and cost-effectiveness. On the other hand, the optical bandwidth has been around 15 nm at most. In this paper, we have proposed newly designed hybrid EDSFAs for more than 25 nm optical bandwidth. The gain peak around 1. 53 µm can be suppressed through the saturation degree control in both EDSFs. The remaining obstacle is the diparound 1. 54 µm, which results in the relative gain non-uniformity of 10. 7% over the wavelength range from 1535 to 1560 nm. Owing to the glass composition optimization, the relative gain non-uniformity has been reduced to 5.8% without gain equalizers(GEQs), which is comparable to that of EDFFAs. As another solution, the hybrid EDSFA including two-stage Fabry Perot etalons as the GEQ has been proposed. In this configuration, the hybrid EDSFA has been designed to exhibit the gain profile similar to the summation of two sinusoidal curves, and the relative gain non-uniformity has been reduced to 3. 7%, which is almost equal to that of the hybrid EDFAs composed of EDSF and EDFF. Moreover, it has been demonstrated that newly developed hybrid EDSFAs exhibit a higher pumping efficiency and a lower NF than EDFFAs and hybrid EDSF/EDFFAs.

  • A Feasible All Optical Soliton Based Inter-LAN Network Using Time Division Multiplexing

    Akira HASEGAWA  Hiroyuki TODA  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:8
      Page(s):
    1681-1686

    By sacrificing approximately ten percent of the transmission speed, ultra-high speed optical time division multiplexed network can be fully operatable by the use of currently available electrical switches. The network utilizes dispersion managed quasi-solitons and transmits TDM packet which comprises of ATM cells that are introduced from a gateway through bit compression to match to the ultra-high speed traffics. The network can provide flexible bandwidth and bit on demand at burst rate of the maximum LAN speed.

  • Gain Equalizer in Long-Haul WDM Transmission System

    Takao NAITO  Naomasa SHIMOJOH  Takafumi TERAHARA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1293-1300

    To expand signal wavelength bandwidth in long-haul, large-capacity WDM transmission systems, we investigated gain-equalizers (GEQs) for Erbium doped fiber amplifiers (EDFAs). We applied GEQs using Mach-Zehnder type filters with two different free-spectral-ranges (FSRs) to accurately compensate for the EDFAs gain-wavelength characteristics. The 1st GEQ with a longer FSR was the main GEQ to compensate for the overall gain-wavelength characteristics, and the 2nd GEQ with a shorter FSR was the secondary GEQ to compensate for the resultant gain undulation after the 1st GEQ. The 2nd GEQ had low maximum loss and long period of equalization-spacing compared to the 1st GEQ. We designed that the FSR for the 1st GEQ was twice the signal wavelength bandwidth, and the FSR for the 2nd GEQ was two thirds of the signal wavelength bandwidth. To compensate for the asymmetry in the EDFAs gain-wavelength characteristics, we designed that the 2nd GEQ minimum-loss wavelength was shorter than the 1st GEQ maximum-loss wavelength. Using a circulating loop with a 21-EDFA chain, we confirmed the signal wavelength bandwidth expanded by the above GEQs. We also investigated the trade-off relationship between the signal wavelength bandwidth and the optical signal-to-noise ratio, as the parameter of the number of the 1st GEQ inserted in the EDFAs chain. The achieved signal wavelength bandwidth after 10,000-km transmission was 12 nm. We successfully transmitted 170 Gbit/s (325. 332 Gbit/s) WDM signals over 9,879 km employing high alumina codoped EDFAs and Mach-Zehnder type filters with long FSRs.

  • A Method of Automatic Skew Normalization for Input Images

    Yasuo KUROSU  Hidefumi MASUZAKI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:8
      Page(s):
    909-916

    It becomes essential in practice to improve a processing rate and to divide an image into small segments adjusting a limited memory, because image filing systems handle large images up to A1 size. This paper proposes a new method of an automatic skew normalization, comprising a high-speed skew detection and a distortion-free dividing rotation. We have evaluated the proposed method from the viewpoints of the processing rate and the accuracy for typed documents. As results, the processing rate is 2. 9 times faster than that of a conventional method. A practical processing rate for A1 size documents can be achieved under the condition that the accuracy of a normalized angle is controlled within 0. 3 degrees. Especially, the rotation with dividing can have no error angle, even when the A1 size documents is divided into 200 segments, whereas the conventional method cause the error angle of 1. 68 degrees.

  • Classification of Surface Curvature from Shading Images Using Neural Network

    Yuji IWAHORI  Shinji FUKUI  Robert J. WOODHAM  Akira IWATA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:8
      Page(s):
    889-900

    This paper proposes a new approach to recover the sign of local surface curvature of object from three shading images using neural network. The RBF (Radial Basis Function) neural network is used to learn the mapping of three image irradiances to the position on a sphere. Then, the learned neural network maps the image irradiances at the neighbor pixels of the test object taken from three illuminating directions of light sources onto the sphere images taken under the same illuminating condition. Using the property that basic six kinds of surface curvature has the different relative locations of the local five points mapped on the sphere, not only the Gaussian curvature but also the kind of curvature is directly recovered locally from the relation of the locations on the mapped points on the sphere without knowing the values of surface gradient for each point. Further, two step neural networks which combines the forward mapping and its inverse mapping one can be used to get the local confidence estimate for the obtained results. The entire approach is non-parametric, empirical in that no explicit assumptions are made about light source directions or surface reflectance. Results are demonstrated by the experiments for real images.

  • Exponential Lower Bounds on the Size of Variants of OBDD Representing Integer Division

    Takashi HORIYAMA  Shuzo YAJIMA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E81-D No:8
      Page(s):
    793-800

    An Ordered Binary Decision Diagram (OBDD) is a directed acyclic graph representing a Boolean function. The size of OBDDs largely depends on the variable ordering. In this paper, we show the size of the OBDD representing the i-th bit of the output of n-bit/n-bit integer division is Ω ( 2(n-i)/8 ) for any variable ordering. We also show that -OBDDs, -OBDDs and -OBDDs representing integer division has the same lower bounds on the size. We develop new methods for proving lower bounds on the size of -OBDDs, -OBDDs and -OBDDs.

  • 40 Gbit/s Single-Channel Soliton Transmission Using Periodic Dispersion Compensation

    Itsuro MORITA  Masatoshi SUZUKI  Noboru EDAGAWA  Keiji TANAKA  Shu YAMAMOTO  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1309-1315

    The effectiveness of periodic dispersion compensation on single-channel 40 Gbit/s soliton transmission system was experimentally investigated. This technique requires just the dispersion compensation fibers and wideband optical filters in the transmission line, which has no difficulty to be used in the practical system. By using polarization-division-multiplexing together with periodic dispersion compensation, single-channel 40 Gbit/s transmission over 4700 km was demonstrated. Single-polarization 40 Gbit/s transmission experiments, which are more suitable for system implementation and compatible with WDM were also conducted. We investigated the transmission characteristics and pulse dynamics in different dispersion maps and in the optimized dispersion map, single-channel, single-polarization 40 Gbit/s transmission over 6300 km was successfully demonstrated.

  • Wavelength Insensitive Tunable Wavelength Conversion Using Cascaded Semiconductor Lasers

    Hiroaki SANJOH  Hiroyuki ISHII  Hiroshi YASAKA  Kunishige OE  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1258-1263

    Input-wavelength-insensitive tunable wavelength conversion was achieved in the range of 1530 to 1560 nm using cascaded semiconductor laser wavelength converters (a DFB laser and an SSG-DBR laser). The power penalty in the wavelength conversion of input signal between 1530 and 1555 nm, where the wavelength ranged between 1537 and 1557 nm, is less than 1 dB for 5 Gbit/s signals.

  • WDM Transmission Technologies for Dispersion-Shifted Fibers

    Masahiko JINNO  Masaki FUKUI  Tadashi SAKAMOTO  Shigeki AISAWA  Jun-ichi KANI  Kimio OGUCHI  

     
    INVITED PAPER-WDM/TDM Transmission and Related Technologies

      Vol:
    E81-C No:8
      Page(s):
    1264-1275

    Dense WDM techniques that exploit the enormous bandwidth of dispersion-shifted fibers (DSFs) while avoiding the impairments due to nonlinear effects are described. First, the nature of four-wave mixing (FWM), the dominant impairment factor in WDM transmission systems, is investigated using DSF installed in the field and laboratory experiments. This provides useful information for the practical design of WDM networks based on DSF. Second, practical techniques to reduce FWM impairment, unequal channel allocation and off-lambda-zero channel allocation (equal channel allocation in the novel 1580 nm band) along with gain-shifted erbium-doped fiber amplifiers for the 1570 to 1600 nm band, is described. Comparisons between off-lambda-zero and unequal channel allocation are provided in terms of the maximum transmission distance for various numbers of channels. Two schemes to immunize WDM systems against group velocity dispersion, span-by-span dispersion compensation and optical duobinary format, are presented. The combination of unequal channel allocation with off-lambda-zero channel allocation as well as the combination of two bands: the conventional 1550 nm band and the novel 1580 nm band are proven to be very useful in expanding the usable bandwidth of DSFs.

641-660hit(776hit)