The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] vision(776hit)

601-620hit(776hit)

  • Technical Trend of Multimedia Mobile and Broadband Wireless Access Systems

    Norioki MORINAGA  Akira HASHIMOTO  

     
    INVITED PAPER

      Vol:
    E82-B No:12
      Page(s):
    1897-1905

    This paper outlines technical trend of multimedia mobile and broadband wireless access systems utilizing comprehensive concept and new categorization of wireless access. It is pointed out that mobile communications have much potential market in future high-speed data or IP (Internet Protocol)-based traffic. Categorization of three kinds of wireless access is presented based on the definition adopted by the Radiocommunication Sector in ITU. IMT (International Mobile Telecommunications)-2000 and broadband wireless LANs (Local Area Networks) each representing mobile and nomadic wireless access will bring about a turning point to a new era that wireless communications become dominant media in access networks. With this perspective technical subjects, spectrum consideration and deployment scenario for these systems are discussed.

  • Performance of Orthogonal Multi-Carrier FH-CDMA System in the Presence of Selective Fading and Nonlinear Amplification

    Mitsugu OHKAWA  Hiromitsu WAKANA  Ryuji KOHNO  

     
    PAPER

      Vol:
    E82-A No:12
      Page(s):
    2649-2659

    To improve frequency efficiency or user capacity in multi-path fading environments, we introduce and investigate an orthogonal multi-carrier frequency hopping-code division multiple access (FH-CDMA). These improvements are achieved by combining the orthogonal frequency division multiplexing (OFDM) and FH-CDMA schemes. The basic idea has been previously proposed by the authors. The aim of study in this paper is to evaluate the performance of this scheme in various environments. The theoretical analysis of bit error rate (BER) performance in this paper includes the effects of frequency selective fading in land mobile communications and of nonlinear amplification in satellite communications. A modified scheme of controlling transmission power to be controlled according to the number of simultaneously accessing users is also discussed. This modified scheme improves BER performance for frequency selective fading when the number of simultaneously accessing users in a cellular zone is small. Furthermore, an error-correcting code and its erasure decoding are applied in order to reduce errors due to hits in asynchronous FH/CDMA for reverse link as well as errors due to fading and noise.

  • Optical Code Division Multiplexing (OCDM) and Its Applications to Photonic Networks

    Ken-ichi KITAYAMA  Hideyuki SOTOBAYASHI  Naoya WADA  

     
    INVITED PAPER

      Vol:
    E82-A No:12
      Page(s):
    2616-2626

    Optical code division multiplexing (OCDM) is the other class of multiplexing techniques than time division multiplexing (TDM), wavelength division multiplexing (WDM) and space division multiplexing (SDM). OCDM has been proposed in mid '70s. It has been long since OCDM remains outside the mainstream of research community of optical communications, however, possible scarcity of the wavelength resource in future photonic networks, the simple access protocol as well as versatility of optical codes motivate recent growth of OCDM research activities. In this paper, first, fundamentals of OCDM concept are presented, highlighting optical encoding and optical time gate detection which realize time spreading/despreading. Next, current research activities of OCDM are reviewed by focusing particularly on the optical implementations and the proof-of-concept experiments. It is devoted to three categories; high bit rate point-to-point transmissions, gigabit multiple access, followed by optical path networks using optical code. Finally, future issues are briefly summarized.

  • Semi-Automatic Tool for Aligning a Parameterized CAD Model to Stereo Image Pairs

    Chu-Song CHEN  Kuan-Chung HUNG  Yi-Ping HUNG  Lin-Lin CHEN  Chiou-Shann FUH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1582-1588

    Fully automatic reconstruction of 3D models from images is well-known to be a difficult problem. For many applications, a limited amount of human assistance is allowed and can greatly reduce the complexity of the 3D reconstruction problem. In this paper, we present an easy-to-use method for aligning a parameterized 3D CAD model to images taken from different views. The shape parameters of the 3D CAD model can be recovered accurately. Our work is composed of two parts. In the first part, we developed an interactive tool which allows the user to associate the features in the CAD model to the features in the 2D images. This interactive tool is designed to achieve efficiency and accuracy. In the second part, 3D information extracted from different stereo views are integrated together by using an optimization technique to obtain accurate shape parameters. Some experimental results have been shown to demonstrate the accuracy and usefulness of the recovered CAD model.

  • New Methods of Generating Primes Secure against Both P-1 and P+1 Methods

    Yoshizo SATO  Yasuyuki MURAKAMI  Masao KASAHARA  

     
    PAPER-Security

      Vol:
    E82-A No:10
      Page(s):
    2161-2166

    Since cryptosystem based on the problem of factoring the composite number N can be attacked with P-1 and P+1 methods, it is required that P-1 and P+1 should be difficult to be factored into many small primes, where we assume that the P is a factor of N. In this paper, first, we consider the distribution of secure primes against both P-1 and P+1 methods. Second, we propose two efficient algorithms for generating secure primes against both P-1 and P+1 methods by extending the trial division method.

  • Adaptive Variable Step-Size Griffiths' Algorithm for Blind Demodulation of DS/CDMA Signals

    Ho-Chi HWANG  Che-Ho WEI  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:10
      Page(s):
    1643-1650

    The minimum mean-squared error (MMSE) linear detector has been proposed to successfully suppress the multiple access interference and mitigate the near-far problem in direct-sequence code-division multiple access communication systems. In the presence of unknown or time-varying channel parameters, the MMSE linear detector can be implemented by the blind Griffiths' algorithm, which uses the desired signal vector instead of a training sequence of symbols for initial adaptation. In this paper, a variable step-size (VSS) Griffiths' algorithm is proposed for accelerating the convergence speed, especially in the presence of strong interference. Numerical results show that the convergence properties of the VSS Griffiths' algorithm are robust against the wide eigenvalue-spread problem of the correlation matrix associated with the received signal vector compared to the Griffiths' algorithm using a fixed step-size.

  • A Code-Division Multiplexing Technique for Efficient Data Transmission in VLSI Systems

    Yasushi YUMINAKA  Kazuhiko ITOH  Yoshisato SASAKI  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Non-Binary Architectures

      Vol:
    E82-C No:9
      Page(s):
    1669-1677

    This paper proposes applications of a code-division multiplexing technique to VLSI systems free from interconnection problems. We employ a pseudo-random orthogonal m-sequence carrier as a multiplexable information carrier to achieve efficient data transmission. Using orthogonal property of m-sequences, we can multiplex several computational activities into a single circuit, and execute in parallel using multiplexed data transmission with reduced interconnection. Also, randomness of m-sequences offers the high tolerance to interference (jamming), and suppression of dynamic range of signals while maintaining a sufficient signal-to-noise ratio (SNR). We demonstrate application examples of multiplex computing circuits, neural networks, and spread-spectrum image processing to show the advantages.

  • Vision Chip for Very Fast Detection of Motion Vectors: Design and Implementation

    Zheng LI  Kiyoharu AIZAWA  

     
    PAPER-Imaging Circuits and Algorithms

      Vol:
    E82-C No:9
      Page(s):
    1739-1748

    This paper gives a detailed presentation of a "vision chip" for a very fast detection of motion vectors. The chip's design consists of a parallel pixel array and column parallel block-matching processors. Each pixel of the pixel array contains a photo detector, an edge detector and 4 bits of memory. In the detection of motion vectors, first, the gray level image is binarized by the edge detector and subsequently the binary edge data is used in the block matching processor. The block-matching takes place locally in pixel and globally in column. The chip can create a dense field of motion where a vector is assigned to each pixel by overlapping 2 2 target blocks. A prototype with 16 16 pixels and four block-matching processors has been designed and implemented. Preliminary results obtained by the prototype are shown.

  • Wavelength Converters

    Allan KLOCH  Peter Bukhave HANSEN  David WOLFSON  Tina FJELDE  Kristian STUBKJAER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1209-1220

    After a short introduction to the different requirements to and techniques for wavelength conversion, focus is on cross-gain and cross-phase modulation in SOA based converters. Aspects like jitter accumulation, regeneration and conversion to the same wavelength is discussed. It is predicted that jitter accumulation can be minimised while also assuring a high extinction ratio by using a 9-10 dB ratio between the signal and CW power. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only 20 ps of accumulated jitter and an extinction ratio of 10 dB. The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s. By controlling the input power to an EDFA, the noise redistribution and improvement of the signal-to-noise ratio is demonstrated. In a similar experiment at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of 6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced 8 dB. Obviously, the power reduction allows for longer spans between in-line EDFAs. A simple scheme for regeneration without wavelength conversion is assessed at 2.5 Gbit/s resulting in 4.5 dB lower required EDFA input power. The scheme is characterised by a quasi-digital transfer function that is ideal for regeneration. A combination of cross-gain and cross-phase conversion is used to perform conversion to the same wavelength at 20 Gbit/s. The insertion penalty for this dual-stage converter is below 2 dB and is mainly caused by extinction ratio degradation from the cross-gain converter. Finally, a new device for all-optical wavelength conversion has been proposed and 2.5 Gbit/s operation has been simulated with good results.

  • Wavelength Converters

    Allan KLOCH  Peter Bukhave HANSEN  David WOLFSON  Tina FJELDE  Kristian STUBKJAER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1475-1486

    After a short introduction to the different requirements to and techniques for wavelength conversion, focus is on cross-gain and cross-phase modulation in SOA based converters. Aspects like jitter accumulation, regeneration and conversion to the same wavelength is discussed. It is predicted that jitter accumulation can be minimised while also assuring a high extinction ratio by using a 9-10 dB ratio between the signal and CW power. Using this guideline simulations show that 20 cross-gain modulation converters can be cascaded at 10 Gbit/s with only 20 ps of accumulated jitter and an extinction ratio of 10 dB. The regenerative capabilities of the cross-phase converters are described and verified experimentally at 20 Gbit/s. By controlling the input power to an EDFA, the noise redistribution and improvement of the signal-to-noise ratio is demonstrated. In a similar experiment at 2.5 Gbit/s, the regeneration causes a reduction of the required input power to an in-line EDFA of 6 dB for a power penalty of 1 dB at a bit error rate of 10-9. If two converters are concatenated the power requirement is reduced 8 dB. Obviously, the power reduction allows for longer spans between in-line EDFAs. A simple scheme for regeneration without wavelength conversion is assessed at 2.5 Gbit/s resulting in 4.5 dB lower required EDFA input power. The scheme is characterised by a quasi-digital transfer function that is ideal for regeneration. A combination of cross-gain and cross-phase conversion is used to perform conversion to the same wavelength at 20 Gbit/s. The insertion penalty for this dual-stage converter is below 2 dB and is mainly caused by extinction ratio degradation from the cross-gain converter. Finally, a new device for all-optical wavelength conversion has been proposed and 2.5 Gbit/s operation has been simulated with good results.

  • Novel 1470-nm-Band WDM Transmission and Its Application to Ultra-Wide-Band WDM Transmission

    Jun-ichi KANI  Tadashi SAKAMOTO  Masahiko JINNO  Kuninori HATTORI  Makoto YAMADA  Terutoshi KANAMORI  Kimio OGUCHI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E82-C No:8
      Page(s):
    1397-1406

    A novel 1470-nm-band (S+ band) wavelength-division multiplexing (WDM) transmission system is described. The first advantage of S+-band transmission is suppression of degradation caused by four-wave mixing (FWM), which has been the dominant impairment factor in WDM transmission systems on dispersion-shifted fibers (DSFs). FWM suppression by using the S+ band instead of the conventional 1550-nm-band (M band) is successfully demonstrated. The second advantage is expansion of the usable bandwidth by using the S+ band together with other wavelength bands. A triple-wavelength-band WDM repeaterless transmission experiment using the S+ band, the M band and the L band (1580-nm-band) is conducted over DSF, and it is shown that degradation due to inter-wavelength-band nonlinear interactions is negligible in the transmission. Moreover, the transmission performance of an S+-band linear repeating system is estimated by computer simulation, and compared with that of other wavelength-band systems. In the experiments, thulium-doped fiber amplifiers (TDFAs) are used for amplification of signals in the S+ band.

  • Novel 1470-nm-Band WDM Transmission and Its Application to Ultra-Wide-Band WDM Transmission

    Jun-ichi KANI  Tadashi SAKAMOTO  Masahiko JINNO  Kuninori HATTORI  Makoto YAMADA  Terutoshi KANAMORI  Kimio OGUCHI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E82-B No:8
      Page(s):
    1131-1140

    A novel 1470-nm-band (S+ band) wavelength-division multiplexing (WDM) transmission system is described. The first advantage of S+-band transmission is suppression of degradation caused by four-wave mixing (FWM), which has been the dominant impairment factor in WDM transmission systems on dispersion-shifted fibers (DSFs). FWM suppression by using the S+ band instead of the conventional 1550-nm-band (M band) is successfully demonstrated. The second advantage is expansion of the usable bandwidth by using the S+ band together with other wavelength bands. A triple-wavelength-band WDM repeaterless transmission experiment using the S+ band, the M band and the L band (1580-nm-band) is conducted over DSF, and it is shown that degradation due to inter-wavelength-band nonlinear interactions is negligible in the transmission. Moreover, the transmission performance of an S+-band linear repeating system is estimated by computer simulation, and compared with that of other wavelength-band systems. In the experiments, thulium-doped fiber amplifiers (TDFAs) are used for amplification of signals in the S+ band.

  • An Optical Add-Drop Multiplexer with a Grating-Loaded Directional Coupler in Silica Waveguides

    Naoki OFUSA  Takashi SAITO  Tsuyoshi SHIMODA  Tadahiko HANADA  Yutaka URINO  Mitsuhiro KITAMURA  

     
    INVITED PAPER-Optical Passive Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1248-1251

    An optical add-drop multiplexer with a grating-loaded directional coupler in silica waveguides is demonstrated. The device for this configuration has a large fabrication tolerance and is small in size. A new scheme, in which the coupling length of the directional coupler is twice the complete coupling length, enables low cross-talk for both add and drop operations. This device is polarization-independent due to its relatively low-temperature process.

  • Comparison of Performance between AND and Majority Logic Type Nonlinear Feedforward Logic Pseudonoise Sequence Generators

    Kari H. A. KARKKAINEN  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E82-A No:8
      Page(s):
    1641-1647

    Two classes of nonlinear feedforward logic (NLFFL) pseudonoise (PN) code generators based on the use of AND and majority logic (ML) gates are compared. Cross-correlation and code-division multiple-access (CDMA) properties of properly designed NLFFL sequences are found to be comparable with the properties of well-known linear PN codes. It is determined that code design employing ML gates with an odd number of inputs is easier compared with designing with AND gates. This is especially true when the degree of nonlinearity is large, since the nonbalance problem, e. g. , at the output of an AND gate, can be avoided. ML type sequences are less vulnerable to correlation attack and jamming by the m-sequence of an NLFFL generator

  • An Optical Add-Drop Multiplexer with a Grating-Loaded Directional Coupler in Silica Waveguides

    Naoki OFUSA  Takashi SAITO  Tsuyoshi SHIMODA  Tadahiko HANADA  Yutaka URINO  Mitsuhiro KITAMURA  

     
    INVITED PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1514-1517

    An optical add-drop multiplexer with a grating-loaded directional coupler in silica waveguides is demonstrated. The device for this configuration has a large fabrication tolerance and is small in size. A new scheme, in which the coupling length of the directional coupler is twice the complete coupling length, enables low cross-talk for both add and drop operations. This device is polarization-independent due to its relatively low-temperature process.

  • Integration of Multiple Cues in Shape from Texture

    Hiroyuki UMEMURA  Toshio INUI  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E82-D No:8
      Page(s):
    1228-1236

    Texture has been investigated as a cue for reconstructing 3-D structure. There are various textures in a natural scene. In this paper, the regularity of alignment of texture elements was manipulated to investigate its effect on human perception. The results show that the regularity affects human perception when only the texel density gradient is given as cue or the density cue is inconsistent with the compression cue. We introduce a model based on a MAP estimation to account for the result from a viewpoint of an integration of 3-D cues. The model simultaneously estimates texture properties and 3-D surface orientation by using prior knowledge about texture and 3-D surface. The performance of the model accounts for the experimental result well.

  • A Multibeam Antenna Using Switched Parasitic and Switched Active Elements for Space-Division Multiple Access Applications

    Stephanie PRESTON  David THIEL  Jun LU  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1202-1210

    This paper describes a multibeam antenna which uses switched parasitic and switched active elements to obtain multiple simultaneous directional beams that can be steered in azimuth. A 13 element monopole multibeam array has been optimised for gain and front to back ratio. Results from numerical simulation and measurements in an anechoic chamber are presented. The 13 element array can achieve up to three beams simultaneously with a minimum gain over 360 azimuthal coverage of 1.2 dB less than the maximum gain. Located on a ground plane with diameter of 2λ at 1.5 GHz, the maximum elevation angle was 20.2 with -3 dB vertical beamwidth of 88.

  • An Exponential Lower Bound on the Size of a Binary Moment Diagram Representing Integer Division

    Masaki NAKANISHI  Kiyoharu HAMAGUCHI  Toshinobu KASHIWABARA  

     
    PAPER

      Vol:
    E82-A No:5
      Page(s):
    756-766

    A binary moment diagram, which was proposed for arithmetic circuit verification, is a directed acyclic graph representing a function from binary-vectors to integers (f : {0,1}n Z). A multiplicative binary moment diagram is an extension of a binary moment diagram with edge weights attached. A multiplicative binary moment diagram can represent addition, multiplication and many other functions with polynomial numbers of vertices. Lower bounds for division, however, had not been investigated. In this paper, we show an exponential lower bound on the number of vertices of a multiplicative binary moment diagram representing a quotient function or a remainder function.

  • Time-Division Multiplexing Realizations of Multiple-Output Functions Based on Shared Multi-Terminal Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E82-D No:5
      Page(s):
    925-932

    This paper considers methods to design multiple-output networks based on decision diagrams (DDs). TDM (time-division multiplexing) systems transmit several signals on a single line. These methods reduce: 1) hardware; 2) logic levels; and 3) pins. In the TDM realizations, we consider three types of DDs: shared binary decision digrams (SBDDs), shared multiple-valued decision diagrams (SMDDs), and shared multi-terminal multiple-valued decision diagrams (SMTMDDs). In the network, each non-terminal node of a DD is realized by a multiplexer (MUX). We propose heuristic algorithms to derive SMTMDDs from SBDDs. We compare the number of non-terminal nodes in SBDDs, SMDDs, and SMTMDDs. For nrm n, log n, and for many other benchmark functions, SMTMDD-based realizations are more economical than other ones, where nrm n is a (2n)-input (n1)-output function computing (X2+Y2)+0.5, log n is an n-input n-output function computing (2n1)log(x1)/nlog2, and a denotes the largest integer not greater than a.

  • A Variable Partition Duplex Scheme with Enlarged Reservation Duration on Packet Reservation Multiple Access Protocol

    Cooper CHANG  Chung-Ju CHANG  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:5
      Page(s):
    751-759

    A variable partition duplex scheme on packet reservation multiple access protocol (VPD-PRMA) is analyzed in this paper. We assume a four-state speech model for a conversational pair and successfully obtain performance measures by approximate Markovian analysis. Analytical results show that they quite fit simulation results; and VPD-PRMA can get higher statistical multiplexing gain than fixed partition duplex (FPD)-PRMA, due to the trunking effect. We further investigate the effect of design parameters of permission probability and enlarged reservation duration on system performance by computer simulation. Simulation results shows that it exists appropriate values for these two design parameters so that the packet dropping probability can be minimized. The adjustment of permission probability can greatly improve the performance of uplink traffic with slight deterioration of the performance of downlink traffic; the provision of enlarged reservation duration scheme can enhance the system performance.

601-620hit(776hit)