1-6hit |
Koh UEDA Yojiro MORI Hiroshi HASEGAWA Hiroyuki MATSUURA Kiyo ISHII Haruhiko KUWATSUKA Shu NAMIKI Toshio WATANABE Ken-ichi SATO
This paper presents a fast and large-scale optical circuit-switch architecture for intra-datacenter applications that uses a combination of space switches and wavelength-routing switches are utilized. A 1,440 × 1,440 optical switch is designed with a fast-tunable laser, 8×8 delivery-and-coupling switch, and a 180×180 wavelength-routing switch. We test the bit-error-ratio characteristics of all ports of the wavelength-routing switch using 180-wavelength 10-Gbps signals in the full C-band. The worst switching time, 498 microseconds, is confirmed and all bit-error ratios are acceptable.
Takahiro KODAMA Ryosuke MATSUMOTO Akihiro MARUTA Tsuyoshi KONISHI Ken-ichi KITAYAMA
We numerically and experimentally demonstrate for the first time a novel all-optical quantization technique using dense spectral slicing with a specially designed arrayed waveguide grating for orthogonal frequency division multiplexed signals. By using a mode-locked laser diode with low jitter, the quantization technique can be achieved a high-speed and low-jitter operation. Both numerical and experimental results confirm the feasibility of 10 GSample/s, completely linear 3-bit step quantization for photonic analog to digital conversion. This optical quantization technique will be beneficial for ultra-high-speed optical communication using digital signal processing.
Naokatsu YAMAMOTO Kouichi AKAHANE Toshimasa UMEZAWA Tetsuya KAWANISHI
A quantum dot (QD) electro-absorption device was successfully developed with a highly stacked InAs/InGaAlAs QD structure. A 1.55-µm waveband electro-absorption effect and a quantum confined Stark effect of approximately 22 meV under the application of a 214-kV/cm reverse bias electric field are clearly observed in the developed QD device.
Yoshimasa NAKATAKE Koki WATANABE
This paper presents a formulation of two-dimensional photonic crystal waveguide devices formed by circular cylinders. The device structures are considered as cascade connections of straight waveguides. Decomposing the structure into layers of the cylinder arrays, the input/output properties of the devices are obtained using an analysis method of multilayer structure. We introduce periodic boundary conditions in the direction perpendicular to the wave propagation, and the Floquet-modes of each layer are calculated by the Fourier series expansion method with the help of the recursive transition-matrix algorithm. Then, the input/output properties of the devices are obtained by recursive calculation of scattering matrix with each layer. The presented formulation is validated by numerical experiments by comparing with the previous works.
Katsumi NAKATSUHARA Toyokazu SASAKI Hiroki SATO Takakiyo NAKAGAMI
We studied a silicon (Si) waveguide using ferro-electric liquid crystal (FLC) cladding for various applications in optical networks. The FLCs in the cladding layer change their effective refractive index corresponding to the applied voltage polarity, and give a phase shift to the traveling lightwave in the waveguides. The phase change coefficients of three-layer slab waveguides with FLC/Si/SiO2 structure were calculated. We observed an amplitude change in the output light of an experimental modulator consisting of a Mach-Zehnder interferometer with FLC-cladding Si-rib waveguides on a silicon-on-insulator wafer, and evaluated the phase shift at a wavelength of 1550 nm. We propose optical switching devices using Si-rib waveguide Mach-Zehnder interferometers having FLC cladding. Switching of experimental devices operating at 1550 nm wavelength was demonstrated.
Seok-Hwan JEONG Shinji MATSUO Yuzo YOSHIKUNI Toru SEGAWA Yoshitaka OHISO Hiroyuki SUZUKI
We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.