This paper proposes a high-speed crosspoint-buffer-type ATM switch, named Scalable-Distributed -Arbitration (SDA) switch. The SDA switch employs a new arbitration scheme that allows the switch to be scalable. The SDA switch has a crosspoint buffer and a transit buffer at every crosspoint. Arbitration is executed between the crosspoint buffer and the transit buffer. The arbitration selects a cell based on delay time using a synchronous counter. The selected cell is transferred from a crosspoint buffer to the output port by way of several transit buffers. Since arbitration is executed in a distributed manner at each crosspoint and the arbitration time does not depend on the switch size, the SDA switch can be expanded to realize large throughput. Numerical results show that the SDA switch ensures fairness in terms of delay time. In addition, the maximum delay time and the required crosspoint buffer size of the SDA switch are reduced, compared with those in the conventional switch based on ring arbitration. Thus, the proposed SDA switch based on the new arbitration scheme has a simple and expandable architecture,and will be suitable for future high-speed multimedia ATM networks.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Eiji OKI, Naoaki YAMANAKA, "A High-Speed ATM Switch Based on Scalable Distributed Arbitration" in IEICE TRANSACTIONS on Communications,
vol. E80-B, no. 9, pp. 1372-1376, September 1997, doi: .
Abstract: This paper proposes a high-speed crosspoint-buffer-type ATM switch, named Scalable-Distributed -Arbitration (SDA) switch. The SDA switch employs a new arbitration scheme that allows the switch to be scalable. The SDA switch has a crosspoint buffer and a transit buffer at every crosspoint. Arbitration is executed between the crosspoint buffer and the transit buffer. The arbitration selects a cell based on delay time using a synchronous counter. The selected cell is transferred from a crosspoint buffer to the output port by way of several transit buffers. Since arbitration is executed in a distributed manner at each crosspoint and the arbitration time does not depend on the switch size, the SDA switch can be expanded to realize large throughput. Numerical results show that the SDA switch ensures fairness in terms of delay time. In addition, the maximum delay time and the required crosspoint buffer size of the SDA switch are reduced, compared with those in the conventional switch based on ring arbitration. Thus, the proposed SDA switch based on the new arbitration scheme has a simple and expandable architecture,and will be suitable for future high-speed multimedia ATM networks.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e80-b_9_1372/_p
Copy
@ARTICLE{e80-b_9_1372,
author={Eiji OKI, Naoaki YAMANAKA, },
journal={IEICE TRANSACTIONS on Communications},
title={A High-Speed ATM Switch Based on Scalable Distributed Arbitration},
year={1997},
volume={E80-B},
number={9},
pages={1372-1376},
abstract={This paper proposes a high-speed crosspoint-buffer-type ATM switch, named Scalable-Distributed -Arbitration (SDA) switch. The SDA switch employs a new arbitration scheme that allows the switch to be scalable. The SDA switch has a crosspoint buffer and a transit buffer at every crosspoint. Arbitration is executed between the crosspoint buffer and the transit buffer. The arbitration selects a cell based on delay time using a synchronous counter. The selected cell is transferred from a crosspoint buffer to the output port by way of several transit buffers. Since arbitration is executed in a distributed manner at each crosspoint and the arbitration time does not depend on the switch size, the SDA switch can be expanded to realize large throughput. Numerical results show that the SDA switch ensures fairness in terms of delay time. In addition, the maximum delay time and the required crosspoint buffer size of the SDA switch are reduced, compared with those in the conventional switch based on ring arbitration. Thus, the proposed SDA switch based on the new arbitration scheme has a simple and expandable architecture,and will be suitable for future high-speed multimedia ATM networks.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - A High-Speed ATM Switch Based on Scalable Distributed Arbitration
T2 - IEICE TRANSACTIONS on Communications
SP - 1372
EP - 1376
AU - Eiji OKI
AU - Naoaki YAMANAKA
PY - 1997
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E80-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 1997
AB - This paper proposes a high-speed crosspoint-buffer-type ATM switch, named Scalable-Distributed -Arbitration (SDA) switch. The SDA switch employs a new arbitration scheme that allows the switch to be scalable. The SDA switch has a crosspoint buffer and a transit buffer at every crosspoint. Arbitration is executed between the crosspoint buffer and the transit buffer. The arbitration selects a cell based on delay time using a synchronous counter. The selected cell is transferred from a crosspoint buffer to the output port by way of several transit buffers. Since arbitration is executed in a distributed manner at each crosspoint and the arbitration time does not depend on the switch size, the SDA switch can be expanded to realize large throughput. Numerical results show that the SDA switch ensures fairness in terms of delay time. In addition, the maximum delay time and the required crosspoint buffer size of the SDA switch are reduced, compared with those in the conventional switch based on ring arbitration. Thus, the proposed SDA switch based on the new arbitration scheme has a simple and expandable architecture,and will be suitable for future high-speed multimedia ATM networks.
ER -