A new scheme based on hierarchical information organization and situation awareness to support network manager in failure localization is proposed. This paper integrates the situation theory for the needs of fault management to model the states and events. As the result, the proposed information model includes four fault management viewpoints to support situational, functional, logical and physical analysis within the respective networks. Object-oriented analysis is applied to construct the information. The correlation of network situation is derived by description logic. The proposed classification algorithm is applied to solve the situation awareness problem. By using this proposal the correlation performance is enhanced to logarithmic order.
KyungHa LEE YongHoon KIM HyungJin CHOI
In this paper, we propose a novel algorithm for all-digital high speed symbol synchronization to be called the MBECM (Modified-Band Edge Component Maximization). The proposed algorithm has a structure based on the spectral line method. It simplifies and modifies the existing BECM algorithm to compensate for the timing offset caused by different phase characteristics of the BPF (band pass filter) at 1/2T and -1/2T. The algorithm is also independent of the carrier recovery and requires only two samples per symbol for its operation. Until now the timing detector's characteristics of the spectral line method including the M-BECM was not analyzed, particularly effect of the timing offset at convergence point. We analyze the timing detector's characteristics of the M-BECM and derive expressions for the timing detector's mean value (often called the S-curve) as a function of the normalized symbol-clock phase, the rolloff parameterand the bandwidth of the BPF. By using these expressions, the PDbias for eliminating the timing offset at an optimal convergence point are calculated. We also analyze and evaluate performance of the proposed algorithm in various ways such as jitter, timing detector output characteristics, etc. and suggest improvements. The proposed M-BECM is compared to the popular Gardner algorithm for high speed modem applications. The proposed algorithm has simpler structure than the Gardner algorithm and simulation results reveal that the proposed algorithm has better overall performance than the Gardner algorithm in narrow band.
Hiroshi SUNAGA Makoto FURUKAWA Kenji NISHIKAWARA
Key technologies are presented for enhancing the reusability of software in communication switching node systems along with the results obtained from porting software between several types of node systems, including N-ISDN, B-ISDNs, and Intelligent Networks. A reusable software platform based on object-oriented designing and programming techniques has been established and mechanisms for reusing object classes has been developed. Analysis of the reusability showed that this platform can be applied to various types of communication systems and that an average of more than three quarters of a system's programs can be ported. By using our software reuse framework to develop software components, we were able to reduce the time needed to develop device management programs by about 30%. Furthermore, about 80% of these programs can be ported to other systems, so introducing this platform improves software programming productivity.
Kuniaki MOTOSHIMA Katsuhiro SHIMIZU Katsumi TAKANO Takashi MIZUOCHI Tadayoshi KITAYAMA Katsuyoshi ITO
Optical transmission systems with large capacity employing wavelength-division multiplexing (WDM) techniques are now widely under development. Optical amplifiers, especially Erbium-Doped Fiber Amplifiers (EDFA's), are vital components for such transmission systems. Optical amplifiers in WDM systems are employed as common amplifiers for all WDM'ed optical carriers, therefore, change in power of a specific carrier gives rise to gain fluctuation of the remaining carriers. In this paper, we discuss about automatic gain control (AGC) of EDFA for WDM'ed optical carriers under transient gain saturation. Two methods have been reported to perform AGC, i.e., pump feedback control method and compensation light feedback control method. Theory and experimental results have been already reported on pump feedback control method. Here, theory has been generalized to be applicable for compensation light feedback method including schematics with amplified spontaneous emission (ASE) as a probe light to measure the gain of EDFA. Experimental results have confirmed the analysis. Good performance has been obtained for both methods with simple electronic circuits and ASE has been found to work as an excellent probe light source.
Mitsutoshi HOSHINO Norio MURATA
Materials for a new reinforcement method using an internal heating technique have been developed experimentally for fusion splices. The method employs a protective package of a carbon-fiber composite and a hot-melt adhesive in a heat-shrinkable tube. The most appropriate heating current and heating time were determined from a consideration of the decomposition temperature of the adhesive (300
The performance of a noncoherent parallel matched-filter (MF) acquisition scheme with a reference filter (RF) is evaluated for a direct-sequence/spread-spectrum multiple access (DS/SSMA) packet radio system in a mobile cellular environment. This acquisition scheme employs a RF to estimate the variance of interference at the output of detecting MF. Acquisition-based packet throughput of the parallel NM-RF scheme is derived for an AWGN and a Rayleigh fading channels. Packet throughput of a parallel MF-RF acquisition scheme is compared with those of a serial MF scheme, a serial MF-RF scheme, and a parallel MF. From the numerical results, it is shown that the packet throughput decreases with the number of users in the system, and increases with the preamble length. Imperfect power control causes packet throughput to decrease especially when the power control error is large. The considerations in this paper can be applied to the reverse link (mobile-to-base station) design of a DS/SSMA system for packet-type services.
This paper proposes a new multiuser detector, quasi-decorrelating detector (QDD), for a synchronous CDMA system. The QDD has the same complexity as that of decorrelator detector (DD) although it uses feedback loops, the number of which is adjustable to balance the near-far resistance and noise enhancement. The results show that the QDD outperforms the DD under various operational conditions. The impact of different spreading codes on the performance of the QDD is studied. It is shown that the Gold code is the best spreading code suitable for the QDD.
This work is targeted to understand the operating principle of the feedback type echo canceller for use in an FM broadcasting receiver and to study its compensating features and the effects of the practical operating environment on its performance. The effects of the tap interval and the compensation performance in the presence of an echo with excess delay 0 - 15 µs are examined. The results show that the tap interval should be selected according to the observable bandwidth of the channel transfer function and the performance of a feedback type echo canceller has a wavelike curve with respect to the excess delay of the echo. To improve the performance of the feedback type echo canceller, an adaptive echo canceller operating with CM algorithm is proposed and examined with computer simulation. The results show that the compensation performance is improved.
Takatoshi SUGIYAMA Masanobu SUZUKI Shuji KUBOTA
This paper proposes an FFT (Fast Fourier Transform) interference detection for interference suppression which combines notch filtering and FEC (forward error correction) to improve the Pe (probability of error) performance degradation due to co-channel interference in digital satellite communication systems. The proposed FFT interference detection scheme can determine the co-channel interference carrier frequency, power, and bandwidth precisely by using the power detection threshold suitable for the desired signal power spectrum, and the notch filter characteristic can be set according to the results. The interference suppression with the proposed scheme achieves the degradation in required Eb/No to only 1.0 dB at a Pe of 10-4 compared to that with the optimum notch filter (ideal detection) in unknown CW (continuous wave) and FM (frequency modulation) co-channel interference environments. Moreover, the proposed scheme improves the required Eb/No by 6.5 dB compared to that without a notch filter in an FM interference environment with interference carrier frequency offset normalized by the desired signal clock rate of 0.52, desired to undesired (interference) signal power ratio of 3 dB and interference bandwidth at 10 dB down power point from the peak normalized by the desired signal clock rate of 0.25.
Toyohisa TANAKA Ryu MIURA Isamu CHIBA Yoshio KARASAWA
We have developed a Beam Space CMA (Constant Modulus Algorithm) Adaptive Array Antenna system (BSCMA adaptive array antenna) that may be suitable for mobile communications. In this paper, we present experimental results of interference cancellation characteristics using the developed system. The experiment was carried out in a large radio anechoic chamber, while desired and interference signals were transmitted to the system. We focused on the characteristics of capture, convergence and tracking in adaptive processing. The experimental results show excellent interference cancellation characteristics, and demonstrate that the BSCMA adaptive array antenna has a greater feasibility to be applied practically in mobile communications.
This paper proposes a high-speed crosspoint-buffer-type ATM switch, named Scalable-Distributed -Arbitration (SDA) switch. The SDA switch employs a new arbitration scheme that allows the switch to be scalable. The SDA switch has a crosspoint buffer and a transit buffer at every crosspoint. Arbitration is executed between the crosspoint buffer and the transit buffer. The arbitration selects a cell based on delay time using a synchronous counter. The selected cell is transferred from a crosspoint buffer to the output port by way of several transit buffers. Since arbitration is executed in a distributed manner at each crosspoint and the arbitration time does not depend on the switch size, the SDA switch can be expanded to realize large throughput. Numerical results show that the SDA switch ensures fairness in terms of delay time. In addition, the maximum delay time and the required crosspoint buffer size of the SDA switch are reduced, compared with those in the conventional switch based on ring arbitration. Thus, the proposed SDA switch based on the new arbitration scheme has a simple and expandable architecture,and will be suitable for future high-speed multimedia ATM networks.