This paper shows that the Surrounding Gate Transistor (SGT) can be scaled down to decananometer gate lengths by using an intrinsically-doped body and gate work function engineering. Strong gate controllability is an essential characteristics of the SGT. However, by using an intrinsically-doped body, the SGT can realize a higher carrier mobility and stronger gate controllability of the silicon body. Then, in order to adjust the threshold voltage, it is necessary to adopt gate work function engineering in which a metal or metal silicide gate is used. Using a three-dimensional (3D) device simulator, we analyze the short-channel effects and current characteristics of the SGT. We compare the device characteristics of the SGT to those of the Tri-gate transistor and Double-Gate (DG) MOSFET. When the silicon pillar diameter (or silicon body thickness) is 10 nm, the gate length is 20 nm, and the oxide thickness is 1 nm, the SGT shows a subthreshold swing of 63 mV/dec and a DIBL of -17 mV, whereas the Tri-gate transistor and the DG MOSFET show a subthreshold swing of 71 mV/dec and 77 mV/dec, respectively, and a DIBL of -47 mV and -75 mV, respectively. By adjusting the value of the gate work function, we define the off current at VG = 0 V and VD = 1 V. When the off current is set at 1 pA/µm, the SGT can realize a high on current of 1020 µA/µm at VG = 1 V and VD = 1 V. Moreover, the on current of the SGT is 21% larger than that of the Tri-gate transistor and 52% larger than that of the DG MOSFET. Therefore, the SGT can be scaled reliably toward the decananometer gate length for high-speed and low-power ULSI.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yasue YAMAMOTO, Takeshi HIDAKA, Hiroki NAKAMURA, Hiroshi SAKURABA, Fujio MASUOKA, "Decananometer Surrounding Gate Transistor (SGT) Scalability by Using an Intrinsically-Doped Body and Gate Work Function Engineering" in IEICE TRANSACTIONS on Electronics,
vol. E89-C, no. 4, pp. 560-567, April 2006, doi: 10.1093/ietele/e89-c.4.560.
Abstract: This paper shows that the Surrounding Gate Transistor (SGT) can be scaled down to decananometer gate lengths by using an intrinsically-doped body and gate work function engineering. Strong gate controllability is an essential characteristics of the SGT. However, by using an intrinsically-doped body, the SGT can realize a higher carrier mobility and stronger gate controllability of the silicon body. Then, in order to adjust the threshold voltage, it is necessary to adopt gate work function engineering in which a metal or metal silicide gate is used. Using a three-dimensional (3D) device simulator, we analyze the short-channel effects and current characteristics of the SGT. We compare the device characteristics of the SGT to those of the Tri-gate transistor and Double-Gate (DG) MOSFET. When the silicon pillar diameter (or silicon body thickness) is 10 nm, the gate length is 20 nm, and the oxide thickness is 1 nm, the SGT shows a subthreshold swing of 63 mV/dec and a DIBL of -17 mV, whereas the Tri-gate transistor and the DG MOSFET show a subthreshold swing of 71 mV/dec and 77 mV/dec, respectively, and a DIBL of -47 mV and -75 mV, respectively. By adjusting the value of the gate work function, we define the off current at VG = 0 V and VD = 1 V. When the off current is set at 1 pA/µm, the SGT can realize a high on current of 1020 µA/µm at VG = 1 V and VD = 1 V. Moreover, the on current of the SGT is 21% larger than that of the Tri-gate transistor and 52% larger than that of the DG MOSFET. Therefore, the SGT can be scaled reliably toward the decananometer gate length for high-speed and low-power ULSI.
URL: https://global.ieice.org/en_transactions/electronics/10.1093/ietele/e89-c.4.560/_p
Copy
@ARTICLE{e89-c_4_560,
author={Yasue YAMAMOTO, Takeshi HIDAKA, Hiroki NAKAMURA, Hiroshi SAKURABA, Fujio MASUOKA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Decananometer Surrounding Gate Transistor (SGT) Scalability by Using an Intrinsically-Doped Body and Gate Work Function Engineering},
year={2006},
volume={E89-C},
number={4},
pages={560-567},
abstract={This paper shows that the Surrounding Gate Transistor (SGT) can be scaled down to decananometer gate lengths by using an intrinsically-doped body and gate work function engineering. Strong gate controllability is an essential characteristics of the SGT. However, by using an intrinsically-doped body, the SGT can realize a higher carrier mobility and stronger gate controllability of the silicon body. Then, in order to adjust the threshold voltage, it is necessary to adopt gate work function engineering in which a metal or metal silicide gate is used. Using a three-dimensional (3D) device simulator, we analyze the short-channel effects and current characteristics of the SGT. We compare the device characteristics of the SGT to those of the Tri-gate transistor and Double-Gate (DG) MOSFET. When the silicon pillar diameter (or silicon body thickness) is 10 nm, the gate length is 20 nm, and the oxide thickness is 1 nm, the SGT shows a subthreshold swing of 63 mV/dec and a DIBL of -17 mV, whereas the Tri-gate transistor and the DG MOSFET show a subthreshold swing of 71 mV/dec and 77 mV/dec, respectively, and a DIBL of -47 mV and -75 mV, respectively. By adjusting the value of the gate work function, we define the off current at VG = 0 V and VD = 1 V. When the off current is set at 1 pA/µm, the SGT can realize a high on current of 1020 µA/µm at VG = 1 V and VD = 1 V. Moreover, the on current of the SGT is 21% larger than that of the Tri-gate transistor and 52% larger than that of the DG MOSFET. Therefore, the SGT can be scaled reliably toward the decananometer gate length for high-speed and low-power ULSI.},
keywords={},
doi={10.1093/ietele/e89-c.4.560},
ISSN={1745-1353},
month={April},}
Copy
TY - JOUR
TI - Decananometer Surrounding Gate Transistor (SGT) Scalability by Using an Intrinsically-Doped Body and Gate Work Function Engineering
T2 - IEICE TRANSACTIONS on Electronics
SP - 560
EP - 567
AU - Yasue YAMAMOTO
AU - Takeshi HIDAKA
AU - Hiroki NAKAMURA
AU - Hiroshi SAKURABA
AU - Fujio MASUOKA
PY - 2006
DO - 10.1093/ietele/e89-c.4.560
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E89-C
IS - 4
JA - IEICE TRANSACTIONS on Electronics
Y1 - April 2006
AB - This paper shows that the Surrounding Gate Transistor (SGT) can be scaled down to decananometer gate lengths by using an intrinsically-doped body and gate work function engineering. Strong gate controllability is an essential characteristics of the SGT. However, by using an intrinsically-doped body, the SGT can realize a higher carrier mobility and stronger gate controllability of the silicon body. Then, in order to adjust the threshold voltage, it is necessary to adopt gate work function engineering in which a metal or metal silicide gate is used. Using a three-dimensional (3D) device simulator, we analyze the short-channel effects and current characteristics of the SGT. We compare the device characteristics of the SGT to those of the Tri-gate transistor and Double-Gate (DG) MOSFET. When the silicon pillar diameter (or silicon body thickness) is 10 nm, the gate length is 20 nm, and the oxide thickness is 1 nm, the SGT shows a subthreshold swing of 63 mV/dec and a DIBL of -17 mV, whereas the Tri-gate transistor and the DG MOSFET show a subthreshold swing of 71 mV/dec and 77 mV/dec, respectively, and a DIBL of -47 mV and -75 mV, respectively. By adjusting the value of the gate work function, we define the off current at VG = 0 V and VD = 1 V. When the off current is set at 1 pA/µm, the SGT can realize a high on current of 1020 µA/µm at VG = 1 V and VD = 1 V. Moreover, the on current of the SGT is 21% larger than that of the Tri-gate transistor and 52% larger than that of the DG MOSFET. Therefore, the SGT can be scaled reliably toward the decananometer gate length for high-speed and low-power ULSI.
ER -