The search functionality is under construction.
The search functionality is under construction.

Decananometer Surrounding Gate Transistor (SGT) Scalability by Using an Intrinsically-Doped Body and Gate Work Function Engineering

Yasue YAMAMOTO, Takeshi HIDAKA, Hiroki NAKAMURA, Hiroshi SAKURABA, Fujio MASUOKA

  • Full Text Views

    0

  • Cite this

Summary :

This paper shows that the Surrounding Gate Transistor (SGT) can be scaled down to decananometer gate lengths by using an intrinsically-doped body and gate work function engineering. Strong gate controllability is an essential characteristics of the SGT. However, by using an intrinsically-doped body, the SGT can realize a higher carrier mobility and stronger gate controllability of the silicon body. Then, in order to adjust the threshold voltage, it is necessary to adopt gate work function engineering in which a metal or metal silicide gate is used. Using a three-dimensional (3D) device simulator, we analyze the short-channel effects and current characteristics of the SGT. We compare the device characteristics of the SGT to those of the Tri-gate transistor and Double-Gate (DG) MOSFET. When the silicon pillar diameter (or silicon body thickness) is 10 nm, the gate length is 20 nm, and the oxide thickness is 1 nm, the SGT shows a subthreshold swing of 63 mV/dec and a DIBL of -17 mV, whereas the Tri-gate transistor and the DG MOSFET show a subthreshold swing of 71 mV/dec and 77 mV/dec, respectively, and a DIBL of -47 mV and -75 mV, respectively. By adjusting the value of the gate work function, we define the off current at VG = 0 V and VD = 1 V. When the off current is set at 1 pA/µm, the SGT can realize a high on current of 1020 µA/µm at VG = 1 V and VD = 1 V. Moreover, the on current of the SGT is 21% larger than that of the Tri-gate transistor and 52% larger than that of the DG MOSFET. Therefore, the SGT can be scaled reliably toward the decananometer gate length for high-speed and low-power ULSI.

Publication
IEICE TRANSACTIONS on Electronics Vol.E89-C No.4 pp.560-567
Publication Date
2006/04/01
Publicized
Online ISSN
1745-1353
DOI
10.1093/ietele/e89-c.4.560
Type of Manuscript
PAPER
Category
Semiconductor Materials and Devices

Authors

Keyword