We have developed a design technique for static logic circuits. Using this technique, we designed 1/2 divider-type 1:4 demultiplexer (DEMUX) and 2:1 selector-type 4:1 multiplexer (MUX) circuits, each of which is a key component in high-speed data multiplexing and demultiplexing. These circuits consist of double rail flip-flops (DR F/F). These flip-flops have a smaller mean internal capacitance than single rail flip-flops, making them suitable for high-speed operation. The DR F/F has a symmetric structure, so the double rail toggle flip-flop can put out an exactly balanced CK/CKN signal, which boosts the speed of the data flip-flops. The double rail structure enables 30% faster operation but consumes only 17% more power (per GHz) than a single rail circuit. In addition, our 0.25-µm process technology provides a 70% higher frequency operation than 0.5-µm process technology. At the supply voltage of 2.2 V, the DEMUX circuit and the MUX circuit operate at 4.55 GHz and 2.98 GHz, respectively. In addition, the 0.25-µm DEMUX circuit and the MUX circuit respectively consume 6.0 mW/GHz and 13.7 mW/GHz (@1.3 V), which are only 12% of the power consumed by 3.3-V 0.5-µm circuits. Because of its high-speed and low-power characteristics, our design technique will greatly contribute to the progress of large-scale high-speed telecommunication systems.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sadayuki YASUDA, Yusuke OHTOMO, Masayuki INO, Yuichi KADO, Toshiaki TSUCHIYA, "3-Gb/s CMOS 1:4 MUX and DEMUX ICs" in IEICE TRANSACTIONS on Electronics,
vol. E78-C, no. 12, pp. 1746-1753, December 1995, doi: .
Abstract: We have developed a design technique for static logic circuits. Using this technique, we designed 1/2 divider-type 1:4 demultiplexer (DEMUX) and 2:1 selector-type 4:1 multiplexer (MUX) circuits, each of which is a key component in high-speed data multiplexing and demultiplexing. These circuits consist of double rail flip-flops (DR F/F). These flip-flops have a smaller mean internal capacitance than single rail flip-flops, making them suitable for high-speed operation. The DR F/F has a symmetric structure, so the double rail toggle flip-flop can put out an exactly balanced CK/CKN signal, which boosts the speed of the data flip-flops. The double rail structure enables 30% faster operation but consumes only 17% more power (per GHz) than a single rail circuit. In addition, our 0.25-µm process technology provides a 70% higher frequency operation than 0.5-µm process technology. At the supply voltage of 2.2 V, the DEMUX circuit and the MUX circuit operate at 4.55 GHz and 2.98 GHz, respectively. In addition, the 0.25-µm DEMUX circuit and the MUX circuit respectively consume 6.0 mW/GHz and 13.7 mW/GHz (@1.3 V), which are only 12% of the power consumed by 3.3-V 0.5-µm circuits. Because of its high-speed and low-power characteristics, our design technique will greatly contribute to the progress of large-scale high-speed telecommunication systems.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e78-c_12_1746/_p
Copy
@ARTICLE{e78-c_12_1746,
author={Sadayuki YASUDA, Yusuke OHTOMO, Masayuki INO, Yuichi KADO, Toshiaki TSUCHIYA, },
journal={IEICE TRANSACTIONS on Electronics},
title={3-Gb/s CMOS 1:4 MUX and DEMUX ICs},
year={1995},
volume={E78-C},
number={12},
pages={1746-1753},
abstract={We have developed a design technique for static logic circuits. Using this technique, we designed 1/2 divider-type 1:4 demultiplexer (DEMUX) and 2:1 selector-type 4:1 multiplexer (MUX) circuits, each of which is a key component in high-speed data multiplexing and demultiplexing. These circuits consist of double rail flip-flops (DR F/F). These flip-flops have a smaller mean internal capacitance than single rail flip-flops, making them suitable for high-speed operation. The DR F/F has a symmetric structure, so the double rail toggle flip-flop can put out an exactly balanced CK/CKN signal, which boosts the speed of the data flip-flops. The double rail structure enables 30% faster operation but consumes only 17% more power (per GHz) than a single rail circuit. In addition, our 0.25-µm process technology provides a 70% higher frequency operation than 0.5-µm process technology. At the supply voltage of 2.2 V, the DEMUX circuit and the MUX circuit operate at 4.55 GHz and 2.98 GHz, respectively. In addition, the 0.25-µm DEMUX circuit and the MUX circuit respectively consume 6.0 mW/GHz and 13.7 mW/GHz (@1.3 V), which are only 12% of the power consumed by 3.3-V 0.5-µm circuits. Because of its high-speed and low-power characteristics, our design technique will greatly contribute to the progress of large-scale high-speed telecommunication systems.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - 3-Gb/s CMOS 1:4 MUX and DEMUX ICs
T2 - IEICE TRANSACTIONS on Electronics
SP - 1746
EP - 1753
AU - Sadayuki YASUDA
AU - Yusuke OHTOMO
AU - Masayuki INO
AU - Yuichi KADO
AU - Toshiaki TSUCHIYA
PY - 1995
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E78-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 1995
AB - We have developed a design technique for static logic circuits. Using this technique, we designed 1/2 divider-type 1:4 demultiplexer (DEMUX) and 2:1 selector-type 4:1 multiplexer (MUX) circuits, each of which is a key component in high-speed data multiplexing and demultiplexing. These circuits consist of double rail flip-flops (DR F/F). These flip-flops have a smaller mean internal capacitance than single rail flip-flops, making them suitable for high-speed operation. The DR F/F has a symmetric structure, so the double rail toggle flip-flop can put out an exactly balanced CK/CKN signal, which boosts the speed of the data flip-flops. The double rail structure enables 30% faster operation but consumes only 17% more power (per GHz) than a single rail circuit. In addition, our 0.25-µm process technology provides a 70% higher frequency operation than 0.5-µm process technology. At the supply voltage of 2.2 V, the DEMUX circuit and the MUX circuit operate at 4.55 GHz and 2.98 GHz, respectively. In addition, the 0.25-µm DEMUX circuit and the MUX circuit respectively consume 6.0 mW/GHz and 13.7 mW/GHz (@1.3 V), which are only 12% of the power consumed by 3.3-V 0.5-µm circuits. Because of its high-speed and low-power characteristics, our design technique will greatly contribute to the progress of large-scale high-speed telecommunication systems.
ER -