We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2 Vp-p) output-voltage swings with a high signal quality at 43 and 50 Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8 Vp-p) output-voltage swings and excellent eye openings at 43 and 50 Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12 dB, at 43 and 50 Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yasuyuki SUZUKI, Masayuki MAMADA, "50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits" in IEICE TRANSACTIONS on Electronics,
vol. E95-C, no. 2, pp. 262-267, February 2012, doi: 10.1587/transele.E95.C.262.
Abstract: We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2 Vp-p) output-voltage swings with a high signal quality at 43 and 50 Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8 Vp-p) output-voltage swings and excellent eye openings at 43 and 50 Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12 dB, at 43 and 50 Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E95.C.262/_p
Copy
@ARTICLE{e95-c_2_262,
author={Yasuyuki SUZUKI, Masayuki MAMADA, },
journal={IEICE TRANSACTIONS on Electronics},
title={50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits},
year={2012},
volume={E95-C},
number={2},
pages={262-267},
abstract={We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2 Vp-p) output-voltage swings with a high signal quality at 43 and 50 Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8 Vp-p) output-voltage swings and excellent eye openings at 43 and 50 Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12 dB, at 43 and 50 Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.},
keywords={},
doi={10.1587/transele.E95.C.262},
ISSN={1745-1353},
month={February},}
Copy
TY - JOUR
TI - 50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits
T2 - IEICE TRANSACTIONS on Electronics
SP - 262
EP - 267
AU - Yasuyuki SUZUKI
AU - Masayuki MAMADA
PY - 2012
DO - 10.1587/transele.E95.C.262
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E95-C
IS - 2
JA - IEICE TRANSACTIONS on Electronics
Y1 - February 2012
AB - We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2 Vp-p) output-voltage swings with a high signal quality at 43 and 50 Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8 Vp-p) output-voltage swings and excellent eye openings at 43 and 50 Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12 dB, at 43 and 50 Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.
ER -