The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hidenobu MIYAMOTO(2hit)

1-2hit
  • A 0.18-µm CMOS Hot-Standby PLL Using a Noise-Immune Adaptive-Gain VCO

    Masayuki MIZUNO  Koichiro FURUTA  Takeshi ANDOH  Akira TANABE  Takao TAMURA  Hidenobu MIYAMOTO  Akio FURUKAWA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E80-C No:12
      Page(s):
    1560-1571

    Phase-Locked Loop (PLL) designers have two major problems with regard to the production of practical, portable multimedia communication systems. The first is the difficulty of achieving both fast lock time and low jitter operation simultaneously. This can be particularly difficult because the increase in loop stability needed to reduce jitter increases the lock time. The second is the problem caused by circuits operating at low voltage supplies. Low voltage supplies adversely effect the performance of phase-frequency detectors and charge pump circuits, and they can decrease the noise immunity of oscillators. We have developed a hot-standby architecture, which can achieve both fast lock time and low jitter operation simultaneously, and low-voltage circuit techniques, such as a noise-immune adaptive-gain voltage-controlled oscillator, for a fabricated PLL. This PLL is fully integrated onto a 480-µm450-µm die area with 0.18-µm CMOS technology. It can operate from 0.5 V to 1.2 V, and with a lock range from 40 MHz to 170 MHz at 0.5 V. The jitter is less than 200 ps and the lock time is less than 500 ns.

  • 0.15 µm CMOS Devices with Reduced Junction Capacitance

    Akira TANABE  Kiyoshi TAKEUCHI  Toyoji YAMAMOTO  Takeo MATSUKI  Takemitsu KUNIO  Masao FUKUMA  Ken NAKAJIMA  Naoki AIZAKI  Hidenobu MIYAMOTO  Eiji IKAWA  

     
    PAPER

      Vol:
    E78-C No:3
      Page(s):
    267-273

    0.15 µm CMOS transistors have been fabricated. TiSi2 salicide was used for the gate electrode and source/drain to reduce parasitic resistance. Electron beam (EB) lithography was used for the gate patterning. Since the channel impurity was implanted only around the gate to reduce the junction capacitance, a reasonably short ring oscillator delay of 33 ps was obtained at 1.9 V supply voltage. The parasitic resistance and capacitance contribution on the delay time was analyzed by SPICE simulation. It was shown that the localized channel implant is effective for scaling the delay time and power consumption, because the source/drain size difficult to scale down to as small as the gate length.