The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Koichiro FURUTA(2hit)

1-2hit
  • A 0.18-µm CMOS Hot-Standby PLL Using a Noise-Immune Adaptive-Gain VCO

    Masayuki MIZUNO  Koichiro FURUTA  Takeshi ANDOH  Akira TANABE  Takao TAMURA  Hidenobu MIYAMOTO  Akio FURUKAWA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E80-C No:12
      Page(s):
    1560-1571

    Phase-Locked Loop (PLL) designers have two major problems with regard to the production of practical, portable multimedia communication systems. The first is the difficulty of achieving both fast lock time and low jitter operation simultaneously. This can be particularly difficult because the increase in loop stability needed to reduce jitter increases the lock time. The second is the problem caused by circuits operating at low voltage supplies. Low voltage supplies adversely effect the performance of phase-frequency detectors and charge pump circuits, and they can decrease the noise immunity of oscillators. We have developed a hot-standby architecture, which can achieve both fast lock time and low jitter operation simultaneously, and low-voltage circuit techniques, such as a noise-immune adaptive-gain voltage-controlled oscillator, for a fabricated PLL. This PLL is fully integrated onto a 480-µm450-µm die area with 0.18-µm CMOS technology. It can operate from 0.5 V to 1.2 V, and with a lock range from 40 MHz to 170 MHz at 0.5 V. The jitter is less than 200 ps and the lock time is less than 500 ns.

  • Device-Deviation Tolerant Elastic-Vt CMOS Circuits with Fine-Grain Power Control Capability

    Masayuki MIZUNO  Hitoshi ABIKO  Koichiro FURUTA  Isami SAKAI  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E81-C No:9
      Page(s):
    1463-1472

    An elastic-Vt CMOS circuit is proposed which facilitates both high speed and low power consumption at low supply voltages. This circuit permits fine-grain power control on each multiple circuit block composing a chip, and it is not sensitive to design factors as device-parameter deviations or operating-environment variations. It also does not require any such additional fabrication technology as triple-well structure or multi-threshold voltage. The effectiveness of the circuits design was confirmed in applying it to specially fabricated 16-bit adders and 4-kb SRAMs based on 1. 5-V, 0. 35- µm CMOS technology.