The search functionality is under construction.

Author Search Result

[Author] Masakazu YAMASHINA(9hit)

1-9hit
  • Compact Realization of Phase-Locked Loop Using Digital Control

    Masanori IZUMIKAWA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E80-C No:4
      Page(s):
    544-549

    This paper describes a phase-locked loop (PLL) with digital control featuring a binary quantizing circuit, a synchronizing algorithm, a lock detector and a compact D/A converter. The binary quantizing circuit and synchronizing algorithm make it possible to compare phase and frequency together and to reduce digital control logic by half. Interpolation of upper-bit D/A converter output by lower-bit output reduces the number of current sources of a 9 bit D/A converter from 511 to 80. SPICE simulation with a 0.25 µm CMOS has demonstrated that the development of 200 MHz PLL using digital control is feasible.

  • A Current Direction Sense Technique for Multiport SRAM's

    Masanori IZUMIKAWA  Masakazu YAMASHINA  

     
    PAPER-Memory

      Vol:
    E79-C No:7
      Page(s):
    957-962

    This paper describes two techniques for low-power single-end multiport SRAM's: a current direction sense circuit and a write bit-line swing control circuit. The sense circuit's input node is clamped at an intermediate voltage level, and the circuit transforms current direction into a logic value. It operates four times faster than a CMOS inverter, when driver sizes are equal. When it is applied to a single-end multiport SRAM, access is accelerated 3.2 times faster than that with a CMOS inverter with no increase in power consumption. The write bit-line swing control circuit reduces the bit-line precharge level within the limit of correct operation by using a memory cell replica. The control circuit reduces power consumption for bit-line driving and pseudoread cell current by 40%.

  • A 0.18-µm CMOS Hot-Standby PLL Using a Noise-Immune Adaptive-Gain VCO

    Masayuki MIZUNO  Koichiro FURUTA  Takeshi ANDOH  Akira TANABE  Takao TAMURA  Hidenobu MIYAMOTO  Akio FURUKAWA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E80-C No:12
      Page(s):
    1560-1571

    Phase-Locked Loop (PLL) designers have two major problems with regard to the production of practical, portable multimedia communication systems. The first is the difficulty of achieving both fast lock time and low jitter operation simultaneously. This can be particularly difficult because the increase in loop stability needed to reduce jitter increases the lock time. The second is the problem caused by circuits operating at low voltage supplies. Low voltage supplies adversely effect the performance of phase-frequency detectors and charge pump circuits, and they can decrease the noise immunity of oscillators. We have developed a hot-standby architecture, which can achieve both fast lock time and low jitter operation simultaneously, and low-voltage circuit techniques, such as a noise-immune adaptive-gain voltage-controlled oscillator, for a fabricated PLL. This PLL is fully integrated onto a 480-µm450-µm die area with 0.18-µm CMOS technology. It can operate from 0.5 V to 1.2 V, and with a lock range from 40 MHz to 170 MHz at 0.5 V. The jitter is less than 200 ps and the lock time is less than 500 ns.

  • An MOS Current Mode Logic (MCML) Circuit for Low-Power Sub-GHz Processors

    Masakazu YAMASHINA  Hachiro YAMADA  

     
    PAPER-Low-Voltage Operation

      Vol:
    E75-C No:10
      Page(s):
    1181-1187

    This paper describes a new 0.5-µm MOS current mode Logic (MCML) circuit that operates at 1.2 V, while maintaining high-speed performance, comparable with that of bipolar current mode circuits. An MCML circuit consists of differentially operating MOS transistors and a constant current source. Its performance at low voltage is compared with that of a CMOS circuit and bipolar current mode circuits. At 1.2 V, the MCML circuit has 90% the delay time of a CMOS circuit at 3.3 V. Delay times of CML and ECL circuits are 80% and 67% of that of the MCML circuit, respectively. Power of a 0.5-µm 500-MHz MCML circuit at 1.2 V, however, is 29%, 67% and 46%, of that of CMOS at 3.3 V, CML at 1.8 V and ECL at 2.6 V, respectively. Power-delay products of 500-MHz CMOS, CML and ECL circuits (normalized by the MCML circuit power-delay product) are 3.8, 1.2 and 1.5, respectively. MCML circuits can be used to construct any logic circuits. High-speed compact circuits are feasible, because MCML circuits output complementary signals. The delay time of an MCML full adder is only 200 ps. This is three times faster than that of a 3.3-V CMOS full adder. An MCML circuit has good characteristics and is widely applicable to logic circuits, so it is a useful circuit for producing sub-GHz processors.

  • Capacitance Coupling Immune, Transient Sensitive Accelerator for Resistive Interconnect Signals of Subquarter Micron ULSI

    Tomofumi IIMA  Masayuki MIZUNO  Tadahiko HORIUCHI  Masakazu YAMASHINA  

     
    PAPER-Interface Circuits

      Vol:
    E79-C No:7
      Page(s):
    942-947

    This paper presents a new circuit scheme called a transient sensitive accelerator(TSA) circuit for highly resistive interconnects. The TSA can reduce both delay time and crosstalk voltage. Using the TSA with an interconnect length of 30 mm reduces delay time and crosstalk voltage by 29% and 20%, respectively, A further advantage is that the TSA operates in self-time and thus can be applied to bidirectional signal communication.

  • Device-Deviation Tolerant Elastic-Vt CMOS Circuits with Fine-Grain Power Control Capability

    Masayuki MIZUNO  Hitoshi ABIKO  Koichiro FURUTA  Isami SAKAI  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E81-C No:9
      Page(s):
    1463-1472

    An elastic-Vt CMOS circuit is proposed which facilitates both high speed and low power consumption at low supply voltages. This circuit permits fine-grain power control on each multiple circuit block composing a chip, and it is not sensitive to design factors as device-parameter deviations or operating-environment variations. It also does not require any such additional fabrication technology as triple-well structure or multi-threshold voltage. The effectiveness of the circuits design was confirmed in applying it to specially fabricated 16-bit adders and 4-kb SRAMs based on 1. 5-V, 0. 35- µm CMOS technology.

  • A 1-GHz Portable Digital Delay-Locked Loop with Infinite Phase Capture Ranges

    Koichiro MINAMI  Masayuki MIZUNO  Hiroshi YAMAGUCHI  Toshihiko NAKANO  Yusuke MATSUSHIMA  Yoshikazu SUMI  Takanori SATO  Hisashi YAMASHIDA  Masakazu YAMASHINA  

     
    PAPER

      Vol:
    E84-C No:2
      Page(s):
    220-228

    This paper describes a 1-GHz portable digital delay-locked loop (DLL) with 0.15-µm CMOS technology. There are three factors contributing to jitter in digital DLLs. One is supply-noise induced jitter, another is jitter caused by delay time resolution and phase step in the delay line, and the third is jitter caused by the sensitivity of the phase detector. In order to achieve a low jitter digital DLL, we have developed a master-slave architecture that achieves infinite phase capture ranges and low latency, a delay line that improves the delay time resolution, a phase step suppression technique and a dynamic phase detector with increased sensitivity. These techniques were used to fabricate a digital DLL with improved jitter performance. Measured results showed that the DLL successfully achieves 29-ps peak-to-peak jitter with a quiet supply and 0.2-ps/ mV supply sensitivity.

  • An Area-Effective Datapath Architecture for Embedded Microprocessors and Scalable Systems

    Toshiaki INOUE  Takashi MANABE  Sunao TORII  Satoshi MATSUSHITA  Masato EDAHIRO  Naoki NISHI  Masakazu YAMASHINA  

     
    INVITED PAPER

      Vol:
    E84-C No:8
      Page(s):
    1014-1020

    We have proposed area-reduction techniques for superscalar datapath architectures with 34 SIMD instructions and have developed an integer-media unit based on these techniques. The unit's design is both functionally asymmetrical and integer-SIMD unified, and the resulting savings in area are 27%-48% as compared to other, functionally equivalent mid-level microprocessor designs, with performance that is, at most, only 7.2% lower. Further, in 2-D IDCT processing, the unit outperforms embedded microprocessor designs without SIMD functions by 49%-118%. Specifically, effective area reduction of adders, shifters, and multiply-and-adders has been achieved by using the unified design. These area-effective techniques are useful for embedded microprocessors and scalable systems that employ highly parallel superscalar and on-chip parallel architectures. The integer-media unit has been implemented in an evaluation chip fabricated with 0.15-µm 5-metal CMOS technology.

  • A PLL-Based Programmable Clock Generator with 50-to 350-MHz Oscillating Range for Video Signal Processors

    Junichi GOTO  Masakazu YAMASHINA  Toshiaki INOUE  Benjamin S. SHIH  Youichi KOSEKI  Tadahiko HORIUCHI  Nobuhisa HAMATAKE  Kouichi KUMAGAI  Tadayoshi ENOMOTO  Hachiro YAMADA  

     
    PAPER-Processor Interfaces

      Vol:
    E77-C No:12
      Page(s):
    1951-1956

    A programmable clock generator, based on a phase-locked loop (PLL) circuit, has been developed with 0.5 µm CMOS triple-layer Al interconnection technology for use as an on-chip clock generator in a 300-MHz video signal processor. The PLL-based clock generator generates a clock signal whose frequency ranges from 50 to 350 MHz which is an integral multiple, from 2 to 16, of an external clock frequency. In order to achieve stable operation within this wide range, a voltage controlled oscillator (VCO) with selectable low VCO gain characteristics has been developed. Experimental results show that the clock generator generates a 297-MHz clock with a 27-MHz external clock, with jitter of 180 ps and power dissipation of 120 mW at 3.3-V power supply, and it can also oscillate up to 348 MHz with a 31.7-MHz external clock.