1-7hit |
Atsushi KANDA Akira OHKI Takeshi KUROSAKI Hiroaki SANJOH Kota ASAKA Ryoko YOSHIMURA Toshio ITO Makoto NAKAMURA Masafumi NOGAWA Yusuke OHTOMO Mikio YONEYAMA
The 10-gigabit Ethernet passive optical network (10G-EPON) is a promising candidate for the next generation of fiber-to-the-home access systems. In the symmetric 10G-EPON system, the gigabit Ethernet passive optical network (GE-PON) and 10G-EPON will have to co-exist on the same optical network. For this purpose, an optical triplexer (10G-transmitter, 1G-transmitter, and 10G/1G-receiver) for optical line terminal (OLT) transceivers in 10G/1G co-existing EPON systems has been developed. Reducing the size and cost of the optical triplexer has been one of the largest issues in the effort to deploy 10G-EPON systems for practical use. In this paper, we describe a novel small and low-cost dual-rate optical triplexer for use in 10G-EPON applications. By reducing the optical path length by means of a light collection system with a low-magnification long-focus coupling lens, we have successfully miniaturized the optical triplexer for use in 10G-EPON OLT 10-gigabit small form factor pluggable (XFP) transceivers and decreased the number of lenses. A low-cost design of sub-assemblies also contributes to cost reduction. The triplexer's performance complies with IEEE 802.3av specifications.
Hiroaki SANJOH Hiroyuki ISHII Hiroshi YASAKA Kunishige OE
Input-wavelength-insensitive tunable wavelength conversion was achieved in the range of 1530 to 1560 nm using cascaded semiconductor laser wavelength converters (a DFB laser and an SSG-DBR laser). The power penalty in the wavelength conversion of input signal between 1530 and 1555 nm, where the wavelength ranged between 1537 and 1557 nm, is less than 1 dB for 5 Gbit/s signals.
Yoshiyuki DOI Takaharu OHYAMA Toshihide YOSHIMATSU Tetsuichiro OHNO Yasuhiko NAKANISHI Shunichi SOMA Hiroshi YAMAZAKI Manabu OGUMA Toshikazu HASHIMOTO Hiroaki SANJOH
We review recent progress in integrated photonics devices and their applications for datacom. In addition to current technology used in 100-Gigabit Ethernet (100GbE) with a compact form-factor of the transceiver, the next generation of technology for 400GbE seeks a larger number of wavelengths with a more sophisticated modulation format and higher bit rate per wavelength. For wavelength scalability and functionality, planar lightwave circuits (PLCs), such as arrayed waveguide gratings (AWGs), will be important, as well higher-order-modulation to ramp up the total bit rate per wavelength. We introduce integration technology for a 100GbE optical sub-assembly that has a 4λ x 25-Gb/s non-return-to-zero (NRZ) modulation format. For beyond 100GbE, we also discuss applications of 100GbE sub-assemblies that provide 400-Gb/s throughput with 16λ x 25-Gb/s NRZ and bidirectional 8λ x 50-Gb/s four-level pulse amplitude modulation (PAM4) using PLC cyclic AWGs.
Keishi HABARA Hiroaki SANJO Hideki NISHIZAWA Yoshiaki YAMADA Shigeki HINO Ikuo OGAWA Yasumasa SUZAKI
A rack-mounted prototype packet switch that makes use of wavelength-division-multiplexing (WDM) interconnect techniques has been developed. The switch has a maximum throughput of 320 Gbit/s. It features a WDM star-based switch architecture, an electrical control circuit layer and a broad-bandwidth optical WDM layer. The basic characteristics of the broad bandwidth WDM layer, such as level diagram, transmission characteristics, 32-wavelength-channel switching, and high-speed optical gating within a 1.6-ns guard time, are described. Experimental results demonstrated that the switch can perform practical self-routing switch operations, such as address-extraction, optical buffering, and filtering for packet speeds of up to 10 Gbit/s. The switch is promising for such applications as a terabit-per-second switching node in future WDM transport networks.
Masaki KOHTOKU Hiroaki SANJOH Satoshi OKU Yoshiaki KADOTA Yuzo YOSHIKUNI
This paper describes the design of polarization insensitive InP-based arrayed waveguide gratings (AWGs), and the characteristics of fabricated devices. The use of a deep-ridge waveguide structure made the fabrication of compact polarization-insensitive AWGs possible. As a result, a low crosstalk (-30 dB) 8-channel AWG and a large-scale (64 channel) AWG with 50 GHz channel spacing could be fabricated. An integrated circuit containing an 8-channel AWG with photodetectors is also described.
Kota ASAKA Atsushi KANDA Akira OHKI Takeshi KUROSAKI Ryoko YOSHIMURA Hiroaki SANJOH Toshio ITO Makoto NAKAMURA Mikio YONEYAMA
By using impedance (Z) matching circuits in a low-cost transistor outline (TO) CAN package for a 10 Gb/s transmitter, we achieve a cost-effective and small bidirectional optical subassembly (BOSA) with excellent optical transmission waveforms and a > 40% mask margin over a wide temperature range (-10 to 85). We describe a design for Z matching circuits and simulation results, and discuss the advantage of the cost-effective compensation technique.
Satoshi NARIKAWA Hiroaki SANJOH Naoya SAKURAI Kiyomi KUMOZAKI
We describe the transmission characteristics of a wavelength independent wavelength division multiplexing passive optical network (WDM-PON) based on a wavelength channel data rewriter (WCDR). The WCDR is composed of a linear amplifier (LA) and a saturated semiconductor optical amplifier (SOA), and by using the WCDR in optical network units (ONUs), we can erase the downstream signal and modulate the same wavelength channel with the upstream signal. In this paper, we analyze the data rewriting characteristic, the frequency chirp characteristic and the bit error rate (BER) degradation occasioned by the use of saturated SOAs. Furthermore, we report high-speed transmission with power penalty of less than 1 dB at bit rates of 1.25 Gbit/s, 2.5 Gbit/s and 10 Gbit/s for downstream signals and 1.25 Gbit/s for upstream signals after transmission through 40 km of single-mode fiber.