1-6hit |
Satoshi SHIGEMATSU Hiroki MORIMURA Toshishige SHIMAMURA Takahiro HATANO Namiko IKEDA Yukio OKAZAKI Katsuyuki MACHIDA Mamoru NAKANISHI
This paper describes logic and analog test schemes that improve the testability of a pixel-parallel fingerprint identification circuit. The pixel contains a processing circuit and a capacitive fingerprint sensor circuit. For the logic test, we propose a test method using a pseudo scan circuit to check the processing circuits of all pixels simultaneously. In the analog test, the sensor circuit employs dummy capacitance to mimic the state of a finger touching the chip. This enables an evaluation of the sensitivity of all sensor circuits on logical LSI tester without touching the chip with a finger. To check the effectiveness of the schemes, we applied them to a pixel array in a fingerprint identification LSI. The pseudo scan circuit achieved a 100% failure-detection rate for the processing circuit. The analog test determines that the sensitivities of the sensor circuit in all pixels are in the proper range. The results of the tests confirmed that the proposed schemes can completely detect defects in the circuits. Thus, the schemes will pave the way to logic and analog tests of chips integrating highly functional devices stacked on a LSI.
Satoshi SHIGEMATSU Koji FUJII Hiroki MORIMURA Takahiro HATANO Mamoru NAKANISHI Namiko IKEDA Toshishige SHIMAMURA Katsuyuki MACHIDA Yukio OKAZAKI Hakaru KYURAGI
This paper presents fingerprint image enhancement and rotation schemes that improve the identification accuracy with the pixel-parallel processing of pixels. In the schemes, the range of the fingerprint sensor is adjusted to the finger state, the captured image is retouched to obtain the suitable image for identification, and the image is rotated to the correct angle on the pixel array. Sensor and pixel circuits that provide these operations were devised and a test chip was fabricated using 0.25-µm CMOS and the sensor process. It was confirmed in 150,000 identification tests that the schemes reduce the false rejection rate to 6.17% from 30.59%, when the false acceptance rate is 0.1%.
Hiroki MORIMURA Satoshi SHIGEMATSU Toshishige SHIMAMURA Koji FUJII Chikara YAMAGUCHI Hiroki SUTO Yukio OKAZAKI Katsuyuki MACHIDA Hakaru KYURAGI
This paper describes an adaptive fingerprint-sensing scheme for a user authentication system with a fingerprint sensor LSI to obtain high-quality fingerprint images suitable for identification. The scheme is based on novel evaluation indexes of fingerprint-image quality and adjustable analog-to-digital (A/D) conversion. The scheme adjusts dynamically an A/D conversion range of the fingerprint sensor LSI while evaluating the image quality during real-time fingerprint-sensing operation. The evaluation indexes pertain to the contrast and the ridgelines of a fingerprint image. The A/D conversion range is adjusted by changing quantization resolution and offset. We developed a fingerprint sensor LSI and a user authentication system to evaluate the adaptive fingerprint-sensing scheme. The scheme obtained a fingerprint image suitable for identification and the system achieved an accurate identification rate with 0.36% of the false rejection rate (FRR) at 0.075% of the false acceptance rate (FAR). This confirms that the scheme is very effective in achieving accurate identification.
Toshishige SHIMAMURA Hiroki MORIMURA
A new threshold circuit technique is proposed for a vibration sensing circuit that operates at a nanowatt power level. The sensing circuits that use sample-and-hold require a clock signal, and they consume power to generate a signal. In the use of a Schmitt trigger circuit that does not use a clock signal, a sink current flows when thresholding the analog signal output. The requirements for millimeter-sized wireless sensor nodes are an average power on the order of a nanowatt and a signal transition time of less than 1 ms. To meet these requirements, our circuit limits the sink current with a nanoampere-level current source. The chattering caused by current limiting is suppressed by feeding back the change in output voltage to the limiting current. The increase in the signal transition time that is caused by current limiting is reduced by accelerating the discharge of the load capacitance. For a test chip fabricated in the 0.35-µm CMOS process, the proposed threshold circuits operate without chattering and the average powers are 0.7-3 nW. The signal transition times are estimated in a circuit simulation to be 65-97 µs. The proposed circuit has 1/150th the power-delay product with no time interval of the sensing operation under the condition that the time interval is 1s. These results indicate that, the proposed threshold circuits are suitable for vibration sensing in millimeter-sized wireless sensor nodes.
Teruki SOMEYA Hiroshi FUKETA Kenichi MATSUNAGA Hiroki MORIMURA Takayasu SAKURAI Makoto TAKAMIYA
This paper presents an ultra-low power and temperature-independent voltage detector with a post-fabrication programming method, and presents a theoretical analysis and measurement results. The voltage detector is composed of a programmable voltage detector and a glitch-free voltage detector to realize both programmable and glitch-free operation. The programmable voltage detector enables the programmable detection voltages in the range from 0.52V to 0.85V in steps of less than 49mV. The glitch-free voltage detector enables glitch-free operation when the supply voltage is near 0V. A multiple voltage copier (MVC) in the programmable voltage detector is newly proposed to eliminate the tradeoff between the temperature dependence and power consumption. The design consideration and a theoretical analysis of the MVC are introduced to clarify the relationship between the current in the MVC and the accuracy of the duplication. From the analysis, the tradeoff between the duplication error and the current of MVC is introduced. The proposed voltage detector is fabricated in a 250nm CMOS process. The measurement results show that the power consumption is 248pW and the temperature coefficient is 0.11mV/°C.
Satoshi SHIGEMATSU Hiroki MORIMURA Katsuyuki MACHIDA Yukio OKAZAKI Hakaru KYURAGI
This paper describes pixel-parallel image-matching circuit schemes that provide the optimal binarization, the high-speed low-power comparison, and the accurate matching of fingerprint images needed for fingerprint verification. Image binarizing is adjusted adaptively during the fingerprint sensing operation. The obtained image is compared with the template in the pixel array, and the results from all of the pixels are totaled by a variable-delay circuit at high speed and low power. For accurate matching, the image is scanned by shifting it in the pixel array while maintaining whole image. The experimental results demonstrate that the proposed schemes provide optimal binary images of most fingers under any condition and environment, 11-µs 147-µW totaling of results from 20,584 pixels, and wide-range image scanning and accurate matching for fingerprint images. These schemes are effective for fast and low-power fingerprint verification for a single-chip fingerprint sensor and identifier.