The search functionality is under construction.

Author Search Result

[Author] Katsumi FUJII(8hit)

1-8hit
  • Analyses of Transient Energy Deposition in Biological Bodies Exposed to Electromagnetic Pulses Using Parameter Extraction Method Open Access

    Jerdvisanop CHAKAROTHAI  Katsumi FUJII  Yukihisa SUZUKI  Jun SHIBAYAMA  Kanako WAKE  

     
    INVITED PAPER

      Pubricized:
    2021/12/29
      Vol:
    E105-B No:6
      Page(s):
    694-706

    In this study, we develop a numerical method for determining transient energy deposition in biological bodies exposed to electromagnetic (EM) pulses. We use a newly developed frequency-dependent finite-difference time-domain (FD2TD) method, which is combined with the fast inverse Laplace transform (FILT) and Prony method. The FILT and Prony method are utilized to transform the Cole-Cole model of biological media into a sum of multiple Debye relaxation terms. Parameters of Debye terms are then extracted by comparison with the time-domain impulse responses. The extracted parameters are used in an FDTD formulation, which is derived using the auxiliary differential equation method, and transient energy deposition into a biological medium is calculated by the equivalent circuit method. The validity of our proposed method is demonstrated by comparing numerical results and those derived from an analytical method. Finally, transient energy deposition into human heads of TARO and HANAKO models is then calculated using the proposed method and, physical insights into pulse exposures of the human heads are provided.

  • Evaluation of Sites for Measuring Complex Antenna Factors: Comparison of Theoretical Calculation and TRL-Based Experiment

    Katsumi FUJII  Takashi IWASAKI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:10
      Page(s):
    2419-2426

    The transmission S-parameter between two dipole-elements is a measure to evaluate sites for measuring complex antenna factors (CAF). In this paper, the S-parameter between two dipole-elements on a ground plane is measured using a network analyzer with its TRL (Thru-Reflect-Line) calibration. The S-parameter is also calculated by the method of moment (MoM) and compared to the measurement results. The comparison shows that the calculated S-parameter is usable as a reference value in the evaluation of CAF measurement sites. As an example of the evaluation and selection of measurement sites, the transmission S-parameter on a finite ground plane is calculated using the hybrid method combined the geometrical theory of diffraction (GTD) and MoM. As a result, a preferable antenna setting on the finite ground plane is recommended.

  • Band-Limitation Effects on Microwave Oven Noise in the 2.4-GHz Band

    Yasushi MATSUMOTO  Takahide MURAKAMI  Katsumi FUJII  Akira SUGIURA  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E88-B No:3
      Page(s):
    1307-1312

    Electromagnetic noise radiated from microwave ovens may cause serious interference problems in wireless systems using the 2.4-GHz band. Since oven noise waveforms show strong dependence on the frequency selectivity of the receiver filters, the effect of band limitation on the interfering oven noise is an important issue for evaluating or comparing the performance degradation of wireless systems subject to interference. To understand these effects, theoretical and experimental investigations of the waveform, peak amplitude, and pulse width of band-limited oven noise are carried out. It is found that the peak amplitude of the received noise changes with the bandwidth in a way very similar to the case of a simple RF tone-burst input. The pulse width of the received noise also changes with the receiver bandwidth but takes a minimum value at a certain receiver bandwidth, which is an essential feature of band-limited microwave oven noise. In addition, an appropriate resolution bandwidth is determined for using a spectrum analyzer to obtain accurate oven noise parameters.

  • Antenna Calibration Using the 3-Antenna Method with the In-Phase Synthetic Method

    Katsumi FUJII  Yukio YAMANAKA  Kunimasa KOIKE  Akira SUGIURA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:8
      Page(s):
    2158-2164

    The use of the in-phase synthetic method is proposed for antenna calibration using the three-antenna method (TAM) in order to make the TAM applicable even in a semi-anechoic chamber (SAC) or on an open-area test site. Suitable antenna arrangements are theoretically investigated for this improved calibration method. Experimental analyses demonstrate that the in-phase synthetic method can remarkably reduce unwanted effects of the ground-reflected wave. Therefore, even on a metal ground plane, the proposed TAM with the in-phase synthetic method can yield an accurate actual gain of a double ridged guide antenna at frequencies from 4 GHz to 14 GHz with differences of +0.16/-0.37 dB from the results of the conventional TAM performed in an fully anechoic room (FAR).

  • Effect of a Finite Ground Plane on the S-Parameter between Two Dipole Elements

    Katsumi FUJII  Takashi IWASAKI  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E84-B No:2
      Page(s):
    344-348

    The transmission S-parameter, S21, between dipole elements on a rectangular finite ground plane is calculated by the MoM with planar-segments in the horizontally and vertically polarized configurations. Supposed a 1/10 scaling, the frequency range is selected 0.15-0.8 GHz. The size of the finite ground plane is 40 cm 100 cm. The dipole-element length is 18.8 cm (half-wavelength at 0.8 GHz). The distance between dipole elements is 30 cm. The results are compared to the calculated results with the conventional MoM-GTD hybrid method and also the measured results with a TRL-calibrated network analyzer. It makes clear that the MoM-GTD hybrid method is not applicable to a small ground plane in the vertically polarized configuration. The results calculated by the MoM with planar-segments agree well to the measured results both in the horizontal and vertical polarizations. The results show that the size of the finite ground plane for the vertical polarization should be much larger than for the horizontal polarization.

  • Average of the Height-Dependent Antenna Factor

    Katsumi FUJII  Akira SUGIURA  

     
    INVITED PAPER

      Vol:
    E88-B No:8
      Page(s):
    3108-3114

    Theoretical analyses are carried out on the height dependence of the antenna factor of an EMI antenna to develop an antenna calibration method that can provide the free-space value of the antenna factor. It is found that the antenna factor in general varies with the antenna height in a quasi-periodic way with a period of about λ/2. Thus, the present paper proposes to take an average of the antenna factors over a height range of about λ/2 to obtain an accurate estimate of the free-space antenna factor. Effective antenna arrangements are also proposed for the antenna calibration. Deviations in the estimate from the free-space antenna factor are less than 0.1 dB for tuned dipoles in the frequency range above 50 MHz. But the errors increase up to 0.3 dB at about 35 MHz. For broadband antennas, the free-space antenna factor can be accurately estimated by taking the average of the antenna factors. Errors are estimated to be less than 0.3 dB in the frequency range from 30 MHz to 1000 MHz.

  • Evaluation of BER in Bluetooth Wireless Systems Disturbed by Radiated Noise from Spread Spectrum Clock Systems

    Takahide MURAKAMI  Yasushi MATSUMOTO  Katsumi FUJII  Akira SUGIURA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E89-B No:10
      Page(s):
    2897-2904

    Frequency-modulated clock signals are widely used in personal computers to reduce the amplitude of the clock harmonic noise, as measured using an electromagnetic interference (EMI) test receiver. However, the power of the clock harmonics is not decreased with this technique called spread spectrum clocking (SSC). Hence, the impact of the harmonics of a frequency-modulated clock on the bit error rate (BER) and packet error rate (PER) of a Bluetooth system is theoretically analyzed. In addition, theoretical analysis covers the effectiveness of a frequency hopping spread spectrum (FH-SS) scheme and forward error correction (FEC) in mitigating the degradation in the BER and PER caused by clock harmonic interference. The results indicate that the BER and PER strongly depend on the modulating frequency and maximum frequency deviation of the clock harmonic. They also indicate that radiated clock harmonics may considerably degrade the BER and PER when a Bluetooth receiver is very close to a personal computer. Frequency modulating the clock harmonics slightly reduces the BER while it negligibly reduces the PER.

  • Reduction of Microwave Oven Interference in DS-SS WLAN Systems by Using Adaptive Filters

    Yasushi MATSUMOTO  Masanobu NAKATSUKA  Takahide MURAKAMI  Katsumi FUJII  Akira SUGIURA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3221-3228

    Since WLAN (wireless LAN) systems share the 2.4-GHz frequency band with microwave ovens, interference caused by radiated oven noise is a serious problem in practical WLAN application. To mitigate the oven noise interference in DS-SS (direct-sequence spread spectrum) WLAN systems, the use of adaptive filters is proposed. This method is based on the fact that oven noise behaves like CW (continuous wave) interference within a short duration. In contrast to previous reduction techniques for oven noise, this method can be implemented without changing any specifications of current WLAN systems. The results of numerical and experimental analyses clearly demonstrate the effectiveness of adaptive filters for improving the bit error rates of WLAN links subject to oven noise interference.