The search functionality is under construction.

Author Search Result

[Author] Katsuyoshi WASHIO(7hit)

1-7hit
  • High-Frequency, Low-Noise Si Bipolar Transistor Fabricated Using Self-Aligned Metal/IDP Technology

    Hiromi SHIMAMOTO  Takahiro ONAI  Eiji OHUE  Masamichi TANABE  Katsuyoshi WASHIO  

     
    PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    2007-2012

    A high-frequency, low-noise silicon bipolar transistor that can be used in over-10 Gb/s optical communication systems and wireless communication systems has been developed. The silicon bipolar transistor was fabricated using self-aligned metal/IDP (SMI) technology, which produces a self-aligned base electrode of stacked layers of metal and in-situ doped poly-Si (IDP) by low-temperature selective tungsten CVD. It provides a low base resistance and high-cutoff frequency. The base resistance is reduced to half that of a transistor with a conventional poly-Si base electrode. By using the SMI technology and optimizing the depth of the emitter and the link base, we achieved the maximum oscillation frequency of 80 GHz, a minimum gate delay in an ECL of 11.6 ps, and the minimum noise figure of 0.34 dB at 2 GHz, which are the highest performances among those obtained from ion-implanted base Si bipolar transistors, and are comparable to those of SiGe base heterojunction bipolar transistors.

  • Simplified Distribution Base Resistance Model in Self-Aligned Bipolar Transistors

    Masamichi TANABE  Hiromi SHIMAMOTO  Takahiro ONAI  Katsuyoshi WASHIO  

     
    PAPER-Device and Circuit Characterization

      Vol:
    E79-C No:2
      Page(s):
    165-171

    A simplified distribution base resistance model (SDM) is proposed to identify each component of the base resistance and determine the dominant. This model divides the parasitic base resistance into one straight path and two surrounding paths. It is clarified that the link base resistance is dominant in a short emitter and the surrounding polysilicon base electrode resistance is dominant in a long emitter. In the SDM, the distance of the link base is reduced to half; with metal silicide as the extrinsic base electrode, the base resistance will be reduced to 75%.

  • Test Structure and Experimental Analysis of Emitter-Base Reverse Voltage Stress Degradation in Self-Aligned Bipolar Transistors

    Hiromi SHIMAMOTO  Masamichi TANABE  Takahiro ONAI  Katsuyoshi WASHIO  Tohru NAKAMURA  

     
    PAPER-Reliability Analysis

      Vol:
    E79-C No:2
      Page(s):
    211-218

    The degradation of I-V characteristics under constant emitter-base reverse voltage stress in advanced self-aligned bipolar transistors was analyzed. Experimental analyses have been taken the stress field effect into account when predicting hot-carrier degradation. These analyses showed that base current starts to increase when the reverse voltage stress is about 3 V. The dependence of the base current change on reverse voltages of more than 3 V was also investigated experimentally, and equations expressing hot-carrier degradation in terms of the exponential dependence of excess base current on both reverse stress voltage and stress-enhancing voltage related to emitter-base breakdown voltage were derived.

  • High-Speed High-Density Self-Aligned PNP Technology for Low-Power Complementary Bipolar ULSIs

    Katsuyoshi WASHIO  Hiromi SHIMAMOTO  Tohru NAKAMURA  

     
    PAPER-Device Technology

      Vol:
    E78-C No:4
      Page(s):
    353-359

    A high-speed high-density self-aligned pnp technology for complementary bipolar ULSIs has been developed to achieve high-speed and low-power performance simultaneously. It is fully compatible with the npn process. A low sheet-resistance p+ buried layer and a low sheet-resistance extrinsic n+ polysilicon layer with U-grooved isolation enable the transistor size to be scaled down to about 20 µm2. Current gain of 85 with 4-V collector-emitter breakdown voltage was obtained without any leakage current arising from emitter-base forward tunneling or recombination, which indicates no extrinsic base encroachment problem. A shallow emitter junction depth of 45 nm and narrow base width of 30 nm, obtained by utilizing an optimized retrograded p-well, an arsenic-implanted intrinsic base, and emitter diffusion from BF2-implanted polysilicon, improve the maximum cutoff frequency to 35 GHz. The power dissipation of the pnp pull-down complementary emitter-follower ECL circuit with load capacitances is calculated to be reduced to 20-40% of a conventional ECL circuit.

  • Process and Device Technologies for High Speed Self-Aligned Bipolar Transistors

    Tohru NAKAMURA  Takeo SHIBA  Takahiro ONAI  Takashi UCHINO  Yukihiro KIYOTA  Katsuyoshi WASHIO  Noriyuki HOMMA  

     
    INVITED PAPER

      Vol:
    E78-C No:9
      Page(s):
    1154-1164

    Recent high-speed bipolar technologies based on SICOS (Sidewall Base Contact Structure) transistors are reviewed. Bipolar device structures that include polysilicon are key technologies for improving circuit characteristics. As the characteristics of the upward operated SICOS transistors are close to those of downward transistors, they can easily be applied in memory cells which have near-perfect soft-error-immunity. Newly developed process technologies for making shallow base and emitter junctions to improve circuit performance are also reviewed. Finally, complementary bipolar technology for low-power and high-speed circuits using pnp transistors, and a quasi-drift base transistor structure suitable for below 0.1 µm emitters are discussed.

  • DC and AC Performances in Selectively Grown SiGe-Base HBTs

    Katsuya ODA  Eiji OHUE  Masamichi TANABE  Hiromi SHIMAMOTO  Katsuyoshi WASHIO  

     
    PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    2013-2020

    A selectively grown Si1-xGex base heterojunction bipolar transistor (HBT) was fabricated, and effects of Ge and B profiles on the device performance were investigated. Since no obvious leakage current was observed, it is shown that good crystallinity of Si1-xGex was achieved by using a UHV/CVD system with high-pressure H2 pre-cleaning of the substrate. Very high current gain of 29,000 was obtained in an HBT with a uniform Ge profile by both increasing electron injection from the emitter to the base and reducing band gap energy in the base. Since the Early voltage is affected by the grading of Ge content in the base, the HBT with the graded Ge profile provides very high Early voltage. However, the breakdown voltage is degraded by increasing Ge content because of reducing bandgap energy and changing dopant profile. To increase the cutoff frequency, dopant diffusion must be suppressed, and carrier acceleration by the internal drift field with the graded Ge profile has an additional effect. By doing them, an extremely high cutoff frequency of 130 GHz was obtained in HBT with graded Ge profiles.

  • Low ACPR Characteristics for WCDMA Applications of SiGe:C HBT Devices with Small Emitter Capacitance

    Masao KONDO  Isao MIYASHITA  Tadashi KURAMAOTO  Makoto KOSHIMIZU  Katsuyoshi WASHIO  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    455-465

    We present C-doped SiGe (SiGe:C) heterojunction bipolar transistor (HBT) devices that exhibit highly efficient and linear power characteristics comparable to those of GaAs HBTs under wide-band code-division multiple-access (WCDMA) modulation. Our devices have a novel resistor inserted in their base bias current pass, which is designed to short-circuits DC components of the base current and conducts only envelope frequency signals. The impurity concentration at their emitter-base junctions is reduced by the effect of C doping suppressing B diffusion, and the emitter capacitance is decreased to half that of conventional SiGe HBTs as the result. The combination of these two modifications has significantly reduced the adjacent channel power leakage ratio (ACPR), and the idle current, without degrading power-added-efficiency (PAE). An optimized device with a total emitter area of 3390 µm2 exhibited 48% PAE and 27.4-dBm output power with an ACPR of less than -40 dBc at an idle current of 20 mA under WCDMA modulation at 1.95 GHz and 3.4-V bias voltage.