The search functionality is under construction.

Author Search Result

[Author] Masafumi YAMAMOTO(5hit)

1-5hit
  • Ultra-Fast Optoelectronic Decision Circuit Using Resonant Tunneling Diodes and a Uni-Traveling-Carrier Photodiode

    Kimikazu SANO  Koichi MURATA  Taiichi OTSUJI  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Masafumi YAMAMOTO  Tadao ISHIBASHI  Eiichi SANO  

     
    PAPER-Application of Resonant Tunneling Devices

      Vol:
    E82-C No:9
      Page(s):
    1638-1646

    An ultra-fast optoelectronic decision circuit using resonant tunneling diodes (RTD's) and a uni-traveling-carrier photodiode (UTC-PD) is proposed. The circuit employs two cascaded RTD's for ultra-fast logic operation and one UTC-PD that offers a direct optical input interface. This novel configuration is suitable for ultra-fast decision operation. Two types of decision circuits are introduced: a positive-logic type and a negative-logic type. Operations of these circuits were simulated using SPICE with precisely investigated RTD and UTC-PD models. In terms of circuit speed, 40-Gbit/s decision and 80-Gbit/s demultiplexing were expected. Furthermore, the superiority of the negative-logic type in terms of the circuit operating margin and the relationship between input peak photocurrent and effective logic swing were clarified by SPICE simulations. In order to confirm the basic functions of the circuits and the accuracy of the simulations, circuits were fabricated by monolithically integrating InP-based RTD's and UTC-PD's. The circuits successfully exhibited 40-Gbit/s decision operation and 80-Gbit/s demultiplexing operation with less than 10-mW power dissipation. The superiority of the negative-logic type circuit for the circuit operation was confirmed, and the relationship between the input peak photocurrent and the effective logic swing was as predicted.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1228-1235

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • Device Technology for Monolithic Integration of InP-Based Resonant Tunneling Diodes and HEMTs

    Kevin Jing CHEN  Koichi MAEZAWA  Takao WAHO  Masafumi YAMAMOTO  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1515-1524

    This paper presents the device technology for monolithic integration of InP-based resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The potential of this technology for applications in quantum functional devices and circuits is demonstrated in two integration schemes in which RTDs and FETs are integrated either in Parallel or in series. Based on the parallel integration scheme, we demonstrate an integrated device which exhibits negative differential resistance and modulated peak current. This integrated device forms the foundation of a new category of functional circuits featuring clocked supply voltage. Based on the series integration scheme, resonant-tunneling high electron mobility transistors (RTHEMTs) with novel current-voltage characteristics and useful circuit applications are demonstrated. The high-frequency characteristics of RTHEMTs are also reported.

  • An Optoelectronic Clock Recovery Circuit Using a Resonant Tunneling Diode and a Uni-Traveling-Carrier Photodiode

    Koichi MURATA  Kimikazu SANO  Tomoyuki AKEYOSHI  Naofumi SHIMIZU  Eiichi SANO  Masafumi YAMAMOTO  Tadao ISHIBASHI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1494-1501

    A clock recovery circuit is a key component in optical communication systems. In this paper, an optoelectronic clock recovery circuit is reported that monolithically integrates a resonant tunneling diode (RTD) and a uni-traveling-carrier photodiode (UTC-PD). The circuit is an injection-locked-type RTD oscillator that uses the photo-current generated by the UTC-PD. Fundamental and sub-harmonic clock extraction is confirmed for the first time with good clock recovery circuit characteristics. The IC extracts an electrical 11.55-GHz clock signal from 11.55-Gbit/s RZ optical data streams with the wide locking range of 450 MHz and low power dissipation of 1.3 mW. Furthermore, the extraction of a sub-harmonic clock from 23.1-Gbit/s and 46.2-Gbit/s input data streams is also confirmed in the wider locking range of 600 MHz. The RMS jitter as determined from a single sideband phase noise measurement is extremely low at less than 200 fs in both cases of clock and sub-harmonic clock extraction. To our knowledge, the product of the output power and operating frequency of the circuit is the highest ever reported for injection-locked-type RTD oscillators. These characteristics indicate the feasibility of the optoelectronic clock recovery circuit for use in future ultra-high-speed fully monolithic receivers.

  • 10-GHz Operation of Multiple-Valued Quantizers Using Resonant-Tunneling Devices

    Toshihiro ITOH  Takao WAHO  Koichi MAEZAWA  Masafumi YAMAMOTO  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    949-954

    We study ultrafast operation of multiple-valued quantizers composed of resonant-tunneling diodes (RTDs) and high electron mobility transistors (HEMTs). The operation principle of these quantizers is based on the monostable-multistable transition logic (MML) of series-connected RTDs. The quantizers are fabricated by monolithically integrating InP-based RTDs and 0.7-µm-gate-length HEMTs with a cutoff frequency of 40 GHz. To perform high-frequency experiments, an output buffer and termination resistors are attached to the quantizers, and the quantizers are designed to accommodate high-frequency input signals. Our experiments show that both ternary and quaternary quantizers can operate at clock frequencies of 10 GHz and at input frequencies of 3 GHz. This demonstrates the potential of applying RTD-based multiple-valued quantizers to high-frequency circuits.