1-4hit |
Po-Hung CHEN Koichi ISHIDA Xin ZHANG Yasuyuki OKUMA Yoshikatsu RYU Makoto TAKAMIYA Takayasu SAKURAI
In this paper, a 0.18-V input three-stage charge pump circuit applying forward body bias is proposed for energy harvesting applications. In the developed charge pump, all the MOSFETs are forward body biased by using the inter-stage/output voltages. By applying the proposed charge pump as the startup in the boost converter, the kick-up input voltage of the boost converter is reduced to 0.18 V. To verify the circuit characteristics, the conventional zero body bias charge pump and the proposed forward body bias charge pump were fabricated with 65 nm CMOS process. The measured output current of the proposed charge pump under 0.18-V input voltage is increased by 170% comparing to the conventional one at the output voltage of 0.5 V. In addition, the boost converter successfully boosts the 0.18-V input to higher than 0.65-V output.
Yasuyuki OKUMA Koichi ISHIDA Yoshikatsu RYU Xin ZHANG Po-Hung CHEN Kazunori WATANABE Makoto TAKAMIYA Takayasu SAKURAI
In this paper, Digital Low Dropout Regulator (LDO) is proposed to provide the low noise and tunable power supply voltage to the 0.5-V near-threshold logic circuits. Because the conventional LDO feedback-controlled by the operational amplifier fail to operate at 0.5 V, the digital LDO eliminates all analog circuits and is controlled by digital circuits, which enables the 0.5-V operation. The developed digital LDO in 65 nm CMOS achieved the 0.5-V input voltage and 0.45-V output voltage with 98.7% current efficiency and 2.7-µA quiescent current at 200-µA load current. Both the input voltage and the quiescent current are the lowest values in the published LDO's, which indicates the good energy efficiency of the digital LDO at 0.5-V operation.
Po-Hung CHEN Min-Chiao CHEN Chun-Lin KO Chung-Yu WU
A direct-conversion receiver integrated with the CMOS subharmonic frequency tripler (SFT) for V-band applications is designed, fabricated and measured using 0.13-µm CMOS technology. The receiver consists of a low-noise amplifier, a down-conversion mixer, an output buffer, and an SFT. A fully differential SFT is introduced to relax the requirements on the design of the frequency synthesizer. Thus, the operational frequency of the frequency synthesizer in the proposed receiver is only 20 GHz. The fabricated receiver has a maximum conversion gain of 19.4 dB, a minimum single-side band noise figure of 10.2 dB, the input-referred 1-dB compression point of -20 dBm and the input third order inter-modulation intercept point of -8.3 dB. It draws only 15.8 mA from a 1.2-V power supply with a total chip area of 0.794 mm0.794 mm. As a result, it is feasible to apply the proposed receiver in low-power wireless transceiver in the V-band applications.
Xin ZHANG Yu PU Koichi ISHIDA Yoshikatsu RYU Yasuyuki OKUMA Po-Hung CHEN Takayasu SAKURAI Makoto TAKAMIYA
In this paper, a novel switched-capacitor DC-DC converter with pulse density and width modulation (PDWM) is proposed with reduced output ripple at variable output voltages. While performing pulse density modulation (PDM), the proposed PDWM modulates the pulse width at the same time to reduce the output ripple with high power efficiency. The prototype chip was implemented using 65 nm CMOS process. The switched-capacitor DC-DC converter has 0.2-V to 0.47-V output voltage and delivers 0.25-mA to 10-mA output current from a 1-V input supply with a peak efficiency of 87%. Compared with the conventional PDM scheme, the proposed switched-capacitor DC-DC converter with PDWM reduces the output ripple by 57% in the low output voltage region with the efficiency penalty of 2%.