The search functionality is under construction.

Author Search Result

[Author] Satoru AKIYAMA(3hit)

1-3hit
  • The Umbrella Cell: A High-Density 2T Cell for SOC Applications

    Satoru AKIYAMA  Takao WATANABE  Nobuhiro OODAIRA  Tsuyoshi ISHIKAWA  Digh HISAMOTO  

     
    PAPER-Memory

      Vol:
    E88-C No:4
      Page(s):
    614-621

    To realize a high-density on-chip memory, the authors have proposed a novel logic-process-compatible memory cell. This cell consists of two logic transistors, and placing a planar MIM (metal insulator metal) capacitor on a copper wire above the transistors produces a memory area of 26 F2, which is approximately 60% smaller than a 6T SRAM cell. A suitable cell-bias design and a dual precharge scheme solve the coupling problem inherent in the cell and allow standard logic transistors to be used. This cell--applying the proposed schemes--can handle 10-ns cycle time at a bit-line voltage of 0.7 V. The random cycle is about three times faster than that of a conventional VBL precharge scheme. These results indicate that the umbrella cell is a strong candidate for providing a high-density memory for SOC applications.

  • Long-Retention-Time, High-Speed DRAM Array with 12-F2 Twin Cell for Sub 1-V Operation

    Riichiro TAKEMURA  Kiyoo ITOH  Tomonori SEKIGUCHI  Satoru AKIYAMA  Satoru HANZAWA  Kazuhiko KAJIGAYA  Takayuki KAWAHARA  

     
    PAPER-Memory

      Vol:
    E90-C No:4
      Page(s):
    758-764

    A DRAM-cell array with 12-F2 twin cell was developed and evaluated in terms of speed, retention time, and low-voltage operation. The write and read-out times of the twin-cell array are shorter than those of a single-cell array by 70% and 40% respectively, because of parallel writing and reading of half charge to and from two memory cells. According to measured retention characteristics of the single cells, the twin-cell array improves retention time by 20% compared with the single-cell array at 1 V and keeps the retention time of the single-cell array at 0.4 V. Furthermore, the cell accepts the plate-driven scheme without the need of a dummy cell, lowering the necessary word-line voltage by 0.4 V.

  • A Low-Vt Small-Offset Gated-Preamplifier for Sub-1-V DRAM Mid-Point Sensing

    Satoru AKIYAMA  Riichiro TAKEMURA  Tomonori SEKIGUCHI  Akira KOTABE  Kiyoo ITOH  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    600-608

    A gated sense amplifier (GSA) consisting of a low-Vt gated preamplifier (LGA) and a high-Vt sense amplifier (SA) is proposed. The gating scheme of the LGA enables quick amplification of an initial cell signal voltage (vS0) because of its low Vt and prevents the cell signal from degrading due to interference noise between data lines. As for a conventional sense amplifier (CSA), this new type of noise causes sensing error, and the noise-generation mechanism was clarified for the first time by analysis of vS0. The high-Vt SA holds the amplified signal and keeps subthreshold current low. Moreover, the gating scheme of the low-Vt MOSFETs in the LGA drives the I/O line quickly. The GSA thus simultaneously achieves fast sensing, low-leakage data holding, and fast I/O driving, even for sub-1-V mid-point sensing. The GSA is promising for future sub-1-V gigabit dynamic random-access memory (DRAM) because of reduced variations in the threshold voltage of MOSFETs; thus, the offset voltage of the LGA is reduced. The effectiveness of the GSA was verified with a 70-nm 512-Mbit DRAM chip. It demonstrated row access time (tRCD) of 16.4 ns and read access (tAA) of 14.3 ns at array voltage of 0.9 V.