The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Sungryul LEE(10hit)

1-10hit
  • Output Feedback Consensus of Nonlinear Multi-Agent Systems under a Directed Network with a Time Varying Communication Delay

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E101-A No:9
      Page(s):
    1588-1593

    The output feedback consensus problem of nonlinear multi-agent systems under a directed network with a time varying communication delay is studied. In order to deal with this problem, the dynamic output feedback controller with an additional low gain parameter that compensates for the effect of nonlinearity and a communication delay is proposed. Also, it is shown that under some assumptions, the proposed controller can always solve the output feedback consensus problem even in the presence of an arbitrarily large communication delay.

  • Robust Reduced Order Observer for Lipschitz Nonlinear Systems

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E92-A No:6
      Page(s):
    1530-1534

    This paper presents a robust reduced order observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

  • An Adaptive High Gain Observer Design for Nonlinear Systems

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:9
      Page(s):
    1966-1970

    This paper studies an adaptive high gain observer design for nonlinear systems which have lower triangular nonlinearity with Lipschitz coefficient, depending on the control input. Because the gain of the proposed observer is tuned automatically by a simple update law, our design approach doesn't need any information about the Lipschitz constant. Also, it is shown that under some assumptions, the dynamic gain of the proposed observer is bounded and its estimation error converges to zero asymptotically. Finally, a numerical example is given to verify the effectiveness of our design approach.

  • Adaptive Output Feedback Leader-Following in Networks of Linear Systems Using Switching Logic Open Access

    Sungryul LEE  

     
    LETTER-Systems and Control

      Pubricized:
    2024/05/13
      Vol:
    E107-A No:9
      Page(s):
    1565-1569

    This study explores adaptive output feedback leader-following in networks of linear systems utilizing switching logic. A local state observer is employed to estimate the true state of each agent within the network. The proposed protocol is based on the estimated states obtained from neighboring agents and employs a switching logic to tune its adaptive gain by utilizing only local neighboring information. The proposed leader-following protocol is fully distributed because it has a distributed adaptive gain and relies on only local information from its neighbors. Consequently, compared to conventional adaptive protocols, the proposed design method provides the advantages of a very simple adaptive law and dynamics with a low dimension.

  • Observer Design for Feedforward Nonlinear Systems with Delayed Output

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:3
      Page(s):
    869-872

    This paper proposes the state observer design for feedforward nonlinear systems with delayed output. It is shown that by using the Lyapunov-Krasovskii functional, the proposed design method ensures the asymptotic stability of estimation error for an arbitrarily large output delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

  • Consensus of High-Order Integrators with Arbitrary Communication Delay

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:3
      Page(s):
    885-889

    This letter investigates the consensus problem for an undirected network of high-order integrators with an arbitrarily large communication delay. A consensus protocol with the low gain parameter that can eliminate an effect of time delay on the consensus problem is proposed newly. Moreover, it is proved that under some sufficient conditions, it can solve the consensus problem in the presence of an arbitrarily large communication delay. A simulation example is presented to verify the validness of the proposed design.

  • Output Feedback Consensus of Lower Triangular Nonlinear Systems under a Switching Topology

    Sungryul LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1550-1555

    The output feedback consensus problem of lower triangular nonlinear systems under a directed network with a switching topology is studied. It is assumed that every possible network topology contains a directed spanning tree. The proposed design method utilizes a high gain approach to compensate for triangular nonlinearity and to remove the restriction imposed on dwell time. Compared to the previous research, it is shown that the proposed control method can achieve the output feedback consensus of lower triangular nonlinear systems even in the presence of an arbitrarily small average dwell time. A numerical example is given to illustrate the effectiveness of the proposed design method.

  • Consensus of Nonlinear Multi-Agent Systems with an Arbitrary Communication Delay

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:9
      Page(s):
    1977-1981

    This letter deals with the consensus problem of multi-agent systems, which are composed of feedforward nonlinear systems under a directed network with a communication time delay. In order to solve this problem, a new consensus protocol with a low gain parameter is proposed. Moreover, it is shown that under some sufficient conditions, the proposed protocol can solve the consensus problem of nonlinear multi-agent systems even in the presence of an arbitrarily large communication delay. An illustrative example is presented to verify the validity of the proposed approach.

  • Robust Reduced Order Observer for Discrete-Time Lipschitz Nonlinear Systems

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:8
      Page(s):
    1560-1564

    The robust reduced order observer for a class of discrete-time Lipschitz nonlinear systems with external disturbance is proposed. It is shown that the proposed observer design can suppress the effect on the estimation error of external disturbance up to the prescribed level. Also, linear matrix inequalities are used to represent sufficient conditions on the existence of the proposed observer. Moreover, the maximum admissible Lipschitz constant of the proposed design is obtained for a given disturbance attenuation level. Finally, an illustrative example is given to verify the effectiveness of the proposed design.

  • A State Observer for a Special Class of MIMO Nonlinear Systems and Its Application to Induction Motor

    Sungryul LEE  Euntai KIM  Mignon PARK  

     
    PAPER-Systems and Control

      Vol:
    E86-A No:4
      Page(s):
    866-873

    This paper presents an observer design methodology for a special class of MIMO nonlinear systems. First, we characterize the class of MIMO nonlinear systems that consists of the linear observable part and the nonlinear part with a block triangular structure. Also, the similarity transformation that plays an important role in proving the convergence of the proposed observer is generalized to MIMO systems. Since the gain of the proposed observer minimizes a nonlinear part of the system to suppress for the stability of the error dynamics, it improves the transient performance of the high gain observer. Moreover, by using the generalized similarity transformation, it is shown that under some observability and boundedness conditions, the proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results for induction motor are included to illustrate the validity of our design scheme.