1-2hit |
Yoshitada IYAMA Noriharu SUEMATSU Tomonori SHIGEMATSU Takao MORIWAKI Tatsuhiko IKEDA
A simplified equivalent circuit, which is useful in L-band, of switching MOSFET is presented. The MOSFET model accounts for the relatively low resistivity of Si substrate. By using this circuits, the relationship between the MOSFET equivalent circuit parameters and a series-shunt FET connected SPDT switch characteristics has been revealed. In order to evaluate the relationship mentioned above, enhancement type NMOSFETs and a SPDT switch with the FETs are fabricated. The MOSFET equivalent circuit parameters at L-band were extracted from measured small-signal S-parameters of the FETs. The measured switch characteristics are fairly good agreement with the simulated results which has been accomplished by using the MOSFET model. This good agreements shows the effectiveness of the MOSFET model which is presented here.
Kazuya YAMAMOTO Takao MORIWAKI Yutaka YOSHI Kenichiro CHOMEI Takayuki FUJII Jun OTSUJI Yukio MIYAZAKI Kazuo NISHITANI
A single-chip GaAs Transmit/Receive (T/R)-MMIC front-end has been developed which is applicable to 1. 9-GHz personal communication terminals such as digital cordless phones. This chip is fabricated using a planar self-aligned gate FET useful for low-cost and high-volume production. The chip integrates RF front-end analog circuits a power amplifier, a T/R-switch, and a low-noise amplifier. Additionally integrated are a newly developed voltage-doubler negative-voltage generator (VDNVG) and a control logic circuit to control transmit and receive functions, enabling both a single-voltage operation and an enhanced power handling capability of the switch, even under a single low-voltage supply condition of 2 V. The power amplifier incorporated onto the chip is capable of delivering a 21 dBm output power at a 39% efficiency, and a 30 dB associated gain with a 2 V single power supply in the transmit mode. The gain and efficiency are higher than those of the previously reported amplifier operating with a 2 V single power supply. The VDNVG produces a step-up voltage of 2. 9 V as well as a negative voltage of -1. 8 V from a 2 V power supply, operating with a charge time of less than 0. 25 µs. The control logic circuit on the chip has a newly designed interface circuit utilizing the step-up voltage and negative voltage, thereby enabling the chip to handle high power outputs over 24 dBm with a low operating voltage of 2 V. In the receive mode, a 1. 7 dB noise figure and a 0. 6 dB insertion loss are achieved with a current dissipation of 3. 6 mA. The developed MMIC, which is the first reported 2 V single-voltage operation T/R-MMIC front-end, is expected to contribute to the size and weight reductions in personal communication terminals.