The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] 8T(6hit)

1-6hit
  • A 28-nm 484-fJ/writecycle 650-fJ/readcycle 8T Three-Port FD-SOI SRAM for Image Processor

    Haruki MORI  Yohei UMEKI  Shusuke YOSHIMOTO  Shintaro IZUMI  Koji NII  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E99-C No:8
      Page(s):
    901-908

    This paper presents a low-power and low-voltage 64-kb 8T three-port image memory using 28-nm FD-SOI process technology. Our proposed SRAM accommodates eight-transistor bit cells comprising one-write/two-read ports and a majority logic circuit to save active energy. The test chip operates at a supply voltage of 0.46V and access time of 140ns. The minimum energy point is a supply voltage of 0.54V and an access time of 55ns (= 18.2MHz), at which 484fJ/cycle in a write operation and 650fJ/cycle in a read operation are achieved assisted by majority logic. These factors are 69% and 47% smaller than those in a conventional 6T SRAM using the 28-nm FD-SOI process technology.

  • A 40-nm 0.5-V 12.9-pJ/Access 8T SRAM Using Low-Energy Disturb Mitigation Scheme

    Shusuke YOSHIMOTO  Masaharu TERADA  Shunsuke OKUMURA  Toshikazu SUZUKI  Shinji MIYANO  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    572-578

    This paper presents a novel disturb mitigation scheme which achieves low-energy operation for a deep sub-micron 8T SRAM macro. The classic write-back scheme with a dedicated read port overcame both half-select and read-disturb problems. Moreover, it improved the yield, particularly in the low-voltage range. The conventional scheme, however, consumed more power because of charging and discharging all write bitlines in a sub-block. Our proposed scheme reduces the power overhead of the write-back scheme using a floating write bitline technique and a low-swing bitline driver (LSBD). The floating bitline and the LSBD respectively consist of a precharge-less CMOS equalizer (transmission gate) and an nMOS write-back driver. The voltage on the floating write bitline is at an intermediate voltage between the ground and the supply voltage before a write cycle. The write target cells are written by normal CMOS drivers, whereas the write bitlines in half-selected columns are driven by the LSBDs in the write cycle, which suppresses the write bitline voltage to VDD - Vtn and therefore saves the active power in the half-selected columns (where Vtn is a threshold voltage of an nMOS). In addition, the proposed scheme reduces a leakage current from the write bitline because of the floating write bitline. The active leakage is reduced by 33% at the FF corner, 125. The active energy in the write operation is reduced by 37% at the FF corner. In other process corners, more writing power reduction can be expected because it depends on the Vtn in the LSBD. We fabricated a 512-Kb 8T SRAM test chip that operates at a single 0.5-V supply voltage. The test chip with the proposed scheme respectively achieves 1.52-µW/MHz writing energy and 72.8-µW leakage power, which are 59.4% and 26.0% better than those of the conventional write-back scheme. The total energy is 12.9 µW/MHz (12.9 pJ/access) at a supply voltage of 0.5 V and operating frequency of 6.25 MHz in a 50%-read/50%-write operation.

  • Analysis of Operation Margin and Read Speed in 6T- and 8T-SRAM with Local Electron Injected Asymmetric Pass Gate Transistor

    Kousuke MIYAJI  Kentaro HONDA  Shuhei TANAKAMARU  Shinji MIYANO  Ken TAKEUCHI  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    564-571

    Three types of electron injection scheme: both side injection scheme and self-repair one side injection scheme Type A (injection for once) and Type B (injection for twice) are proposed and analyzed comprehensively for 65 nm technology node 6T- and 8T-SRAM cells to find the optimum injection scheme and cell architecture. It is found that the read speed degrades by as much as 6.3 times in the 6T-SRAM with the local injected electrons. However, the read speed of the 8T-SRAM cell does not degrade because the read port is separated from the write pass gate transistors. Furthermore, the self-repair one side injection scheme is most suitable to solve the conflict of the half select disturb and write characteristics. The worst cell characteristics of Type A and Type B self-repair one side injection schemes were found to be the same. In the self-repair one side injection 8T-SRAM, the disturb margin increases by 141% without write margin or read speed degradation. The proposed schemes have no process or area penalty compared with the standard CMOS-process.

  • A 10T Non-precharge Two-Port SRAM Reducing Readout Power for Video Processing

    Hiroki NOGUCHI  Yusuke IGUCHI  Hidehiro FUJIWARA  Shunsuke OKUMURA  Yasuhiro MORITA  Koji NII  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E91-C No:4
      Page(s):
    543-552

    We propose a low-power non-precharge-type two-port SRAM for video processing that exploits statistical similarity in images. To minimize the charge/discharge power on a read bitline, the proposed memory cell (MC) has ten transistors (10T), comprised of the conventional 6T MC, a readout inverter and a transmission gate for a read port. In addition, to incorporate three wordlines, we propose a shared wordline structure, with which the vertical cell size of the 10T MC is fitted to the same size as the conventional 8T MC. Since the readout inverter fully charges/discharges a read bitline, there is no precharge circuit on the read bitline. Thus, power is not consumed by precharging, but is consumed only when a readout datum is changed. This feature is suitable to video processing since image data have spatial correlation and similar data are read out in consecutive cycles. As well as the power reduction, the prechargeless structure shortens a cycle time by 38% compared with the conventional SRAM, because it does not require a precharge period. This, in turn, demonstrates that the proposed SRAM operates at a lower voltage, which achieves further power reduction. Compared to the conventional 8T SRAM, the proposed SRAM reduces a charge/discharge possibility to 19% (81% saving) on the bitlines. As the measurement result, we confirmed that the proposed 64-kb video memory in a 90-nm process achieves an 85% power saving on the read bitline, when considered as an H.264 reconstructed image memory. The area overhead is 14.4%.

  • Area Comparison between 6T and 8T SRAM Cells in Dual-Vdd Scheme and DVS Scheme

    Yasuhiro MORITA  Hidehiro FUJIWARA  Hiroki NOGUCHI  Yusuke IGUCHI  Koji NII  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Memory Design and Test

      Vol:
    E90-A No:12
      Page(s):
    2695-2702

    This paper compares areas between a 6T and 8T SRAM cells, in a dual-Vdd scheme and a dynamic voltage scaling (DVS) scheme. In the dual-Vdd scheme, we predict that the area of the 6T cell keep smaller than that of the 8T cell, over feature technology nodes all down to 32 nm. In contrast, in the DVS scheme, the 8T cell will becomes superior to the 6T cell after the 32-nm node, in terms of the area.

  • Area Optimization in 6T and 8T SRAM Cells Considering Vth Variation in Future Processes

    Yasuhiro MORITA  Hidehiro FUJIWARA  Hiroki NOGUCHI  Yusuke IGUCHI  Koji NII  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Next-Generation Memory for SoC

      Vol:
    E90-C No:10
      Page(s):
    1949-1956

    This paper shows that an 8T SRAM cell is superior to a 6T cell in terms of cell area in a future process. At a 65-nm node and later, the 6T cell comprised of the minimum-channel-length transistors cannot make the minimum area because of threshold-voltage variation. In contrast, the 8T cell can employ the optimized transistors and achieves the minimum area even if it is used as a single-port SRAM. In a 32-nm process, the 8T-cell area is smaller than the 6T cell by 14.6% at a supply voltage of 0.8 V. We also discuss the area and access time comparisons between the 6T-SRAM and 8T-SRAM macros.