The search functionality is under construction.

Keyword Search Result

[Keyword] AFC(10hit)

1-10hit
  • An 11.37-to-14.8 GHz Low Phase Noise CMOS VCO in Cooperation with a Fast AFC Unit Achieving -195.3 dBc/Hz FoMT

    Youming ZHANG  Kaiye BAO  Xusheng TANG  Fengyi HUANG  Nan JIANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    963-966

    This paper describes a broadband low phase noise VCO implemented in 0.13 µm CMOS process. A 1-bit switched varactor and a 4-bit capacitor array are adopted in cooperation with the automatic frequency calibration (AFC) circuit to lower the VCO tuning gain (KVCO), with a measured AFC time of 6 µs. Several noise reduction techniques are exploited to minimize the phase noise of the VCO. Measurement results show the VCO generates a high frequency range from 11.37 GHz to 14.8 GHz with a KVCO of less than 270 MHz/V. The prototype exhibits a phase noise of -114.6 dBc/Hz @ 1 MHz at 14.67 GHz carrier frequency and draws 10.5 mA current from a 1.2 V supply. The achieved figure-of-merits (FoM=-186.9dBc/Hz, FoMT=-195.3dBc/Hz) favorably compares with the state-of-the-art.

  • Experiments on Frequency Error Compensation Using Synchronization Channel in OFDM Radio Access

    Hidekazu TAOKA  Fumiaki ITO  Keiji TAKAKUSAKI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1619-1626

    This paper experimentally investigates the effect of frequency error compensation provided by demodulation automatic frequency control (AFC) using the Synchronization Channel (SCH) in downlink OFDM radio access. The implemented OFDM receiver compensates for the frequency error caused by the difference in frequency between a base station (BS) and a user equipment (UE) using a time-division multiplexed SCH signal and that caused by the Doppler shift generated by the mobility of a user using reference signals with staggered multiplexing. Experimental results show that even when the standard oscillator frequency of the UE cannot be made to track the more accurate frequency of a BS, demodulation AFC can suppress the residual frequency error to a sufficiently low level, i.e., within 0.3 ppm, using the SCH so that the degradation in the block error rate of the physical broadcast channel control signals is slight, i.e., within approximately 0.1 dB, with respect to the case without frequency error for speeds greater than 350 km/h.

  • High-Precision AFC Circuit Applied to 64QAM Point-to-Multipoint Burst Communications

    Yushi SHIRATO  Kazuji WATANABE  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:12
      Page(s):
    3288-3295

    In this paper, we propose a novel open-loop Automatic Frequency Control (AFC) circuit suitable for 64QAM point-to-multipoint (P-MP) burst communications. The proposed AFC contains two frequency offset detectors. One estimates the phase rotation over long intervals to obtain accurate estimates at the cost of phase ambiguity. The other estimates the phase rotation over short intervals and its output is used to resolve the ambiguity in the following phase ambiguity compensator. Thus, the proposed AFC circuit calculates the phase rotation over sufficiently long periods to yield accurately estimate the carrier frequency offset while suppressing the phase-unwrapping problem. The proposed AFC approaches the Cramer-Rao bound (CRB) and so achieves very small residual frequency offset. The proposed AFC circuit can be implemented with much smaller circuit scale than the conventional devices. Computer simulations and experiments confirm that its residual frequency error is less than of 10-5 for the frame format considered; this performance is sufficient for the 64QAM -40 Mbaud system targeted.

  • Enhanced Multi-Correlator AFC for Fast and Wide Range Frequency Acquisition

    Fumihiro YAMASHITA  Kiyoshi KOBAYASHI  Yoshinori NAKASUGA  Jin MITSUGI  Masazumi UEBA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2072-2081

    This paper presents a new automatic-frequency control (AFC) configuration capable of removing wide range frequency offsets (up to about 0.625 fs, where fs is signal symbol rate). The new configuration consists of an AFC that removes frequency offsets between 0.125 fs and another AFC that detects the frequency offset range coarsely between 0.625 fs. This paper describes the principle of the new AFC configuration. The proposed AFC configuration employs four correlators to enhance the acquisition range. It also adopts the reverse modulation scheme to decrease the acquisition time. The performance of the new AFC configuration is confirmed via computer simulations. It is shown that the proposed configuration can accommodate wide range frequency offsets as well as reduce the acquisition time.

  • The Modified CP-AFC with Multi-Stage Tracking Mode for WCDMA Reverse Link Receiver

    Joo-Hyun DO  Young-Yong LEE  Hyung-Jin CHOI  

     
    PAPER

      Vol:
    E86-A No:6
      Page(s):
    1397-1404

    In this paper, we propose a modified CP-AFC (Cross-Product Automatic Frequency Control) algorithm to enhance coherent signal detection for WCDMA reverse link receiver. We introduce a moving average filter at the FDD input to decrease the noise effect by increasing the number of cross-products, since pilot symbol in WCDMA is not transmitted continuously. We also add normalization algorithm to overcome the conventional CP-FDD's sensitivity to the variance of input signal amplitude and to increase the linear range of S-curve. For rapid frequency acquisition and tracking, we adopt a multi-stage tracking mode. We applied the proposed algorithm in the implementation of WCDMA base station modem successfully.

  • A Novel Coherent Preambleless Demodulator Employing Sequential Processing for PSK Packet Signals--AFC and Carrier Recovery Circuits--

    Takeshi ONIZAWA  Kiyoshi KOBAYASHI  Masahiro MORIKURA  Toshiaki TANAKA  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:3
      Page(s):
    542-550

    This paper proposes a novel sequential coherent preambleless demodulator that uses phase signals instead of complex signals in the automatic frequency control (AFC) and carrier recovery circuits. The proposed demodulator employs a phase-combined frequency error detection circuit and dual loop AFC circuit to achieve fast frequency acquisition and low frequency jitter. It also adopts an open loop carrier recovery scheme with a sample hold circuit after the carrier filter to ensure carrier signal stability within a packet. It is shown that the frame error rate performance of the proposed demodulator is superior, by 30%, to that offered by differential detection in a frequency selective Rayleigh fading channel. The hardware size of the proposed demodulator is about only 1/10 that of a conventional coherent demodulator employing complex signals.

  • A Fast Synchronization Scheme of OFDM Signals for High-Rate Wireless LAN

    Takeshi ONIZAWA  Masato MIZOGUCHI  Masahiro MORIKURA  Toshiaki TANAKA  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:2
      Page(s):
    455-463

    This paper proposes a fast synchronization scheme with a short preamble signal for high data rate wireless LAN systems using orthogonal frequency division multiplexing (OFDM). The proposed OFDM burst format for fast synchronization and the demodulator for the proposed OFDM burst format are described. The demodulator, which offers automatic frequency control and symbol timing detection, enables us to shorten the preamble length to one quarter that of a conventional one. Computer simulation results show that the degradation in required Eb/N0 due to the synchronization scheme is less than 1 dB in a selective Rayleigh fading channel.

  • High Capacity and Wide Coverage Cell Station for Personal Communication Systems

    Kiyoshi KOBAYASHI  Tomoaki KUMAGAI  Shuji KUBOTA  Shigeaki OGOSE  Takeshi HATTORI  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E82-B No:1
      Page(s):
    112-119

    This paper proposes a new cell station (CS) configuration for personal communication systems. The proposed CS employs a modified coherent demodulator with 4-branch maximal ratio combining diversity and a burst-by-burst automatic frequency control (AFC) to enhance the coverage. The proposed CS also employs an antenna-sharing diversity transmission to incorporate more than one transceiver block into a small unit with high power efficiency. With these techniques, the BER performance of the uplink control channel (CCH) is flattened regardless of carrier frequency errors within 12 kHz; the diversity gain of uplink traffic channel (TCH) is improved by 2 dB; the downlink transmission power is reduced by 1.9 dB.

  • A New AFC Circuit Employing Double-Product Type Frequency Discriminator in Very-Low CNR Environments

    Nobuaki MOCHIZUKI  Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    25-32

    This paper proposes a new AFC (automatic frequency control) circuit employing a double-product type frequency discriminator to enable fast acquisition in very-low CNR (carrier to noise power ratio) environments. The frequency step responses of the proposed AFC circuit are theoretically analyzed. In addition this paper evaluates the performance of the proposed AFC circuit by computer simulation in very-low CNR environments. The simulation results confirm that click noise at the frequency discriminator causes large frequency tracking error and that this error can be improved by increasing the delay time of the double-product type frequency discriminator. The frequency error can be also reduced by introducing the proposed frequency discriminator to modify the frequency error detection performance. The acquisition time of the proposed AFC circuit can be reduced by about 100 symbols compared to the conventional cross-product type AFC circuit.

  • A Pattern Classifier--Modified AFC, and Handwritten Digit Recognition

    Yitong ZHANG  Hideya TAKAHASHI  Kazuo SHIGETA  Eiji SHIMIZU  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E77-D No:10
      Page(s):
    1179-1185

    We modified the adaptive fuzzy classification algorithm (AFC), which allows fuzzy clusters to grow to meet the demands of a given task during training. Every fuzzy cluster is defined by a reference vector and a fuzzy cluster radius, and it is represented as a shape of hypersphere in pattern space. Any pattern class is identified by overlapping plural hyperspherical fuzzy clusters so that it is possible to approximate complex decision boundaries among pattern classes. The modified AFC was applied to recognize handwritten digits, and performances were shown compared with other neural networks.