The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] AIC(177hit)

21-40hit(177hit)

  • On Asymptotically Good Ramp Secret Sharing Schemes

    Olav GEIL  Stefano MARTIN  Umberto MARTÍNEZ-PEÑAS  Ryutaroh MATSUMOTO  Diego RUANO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2699-2708

    Asymptotically good sequences of linear ramp secret sharing schemes have been intensively studied by Cramer et al. in terms of sequences of pairs of nested algebraic geometric codes [4]-[8], [10]. In those works the focus is on full privacy and full reconstruction. In this paper we analyze additional parameters describing the asymptotic behavior of partial information leakage and possibly also partial reconstruction giving a more complete picture of the access structure for sequences of linear ramp secret sharing schemes. Our study involves a detailed treatment of the (relative) generalized Hamming weights of the considered codes.

  • A Thin, Compact and Maintenance-Free Beacon Transmitter Operating from a 44-lux Photovoltaic Film Harvester

    Hiroyuki NAKAMOTO  Hong GAO  Atsushi MURAMATSU  

     
    PAPER

      Vol:
    E100-C No:6
      Page(s):
    584-591

    This paper presents a thin, compact beacon transmitter operating without needing battery replacement by using a photovoltaic (PV) film harvester. The beacon is formed of a power-control circuit (PCC) that can monitor small amounts of power from the harvester and properly control mode switching at low-power consumption. This leads to the realization of a maintenance-free beacon requiring no battery replacement. The beacon prototype is 55×20×2 mm in size and has a PV cell of 3 cm2. It allows a start-up operation from just 44-lux illuminance. The PV area required for the operation can be 1.7 times smaller than that of conventional beacons, thanks to the current saving with appropriate sequential control of the PCC. Since the beacon makes operation possible in emergency stairs, underground passages and other dark places, the application field for Internet of things (IoT) services can be expanded. Furthermore, a beacon equipped with a secondary battery (BSB: Beacon with Secondary Battery) can be configured by adding a charge-discharge power monitoring circuit. The BSB transmits an advertising packet during the daytime while charging surplus power, and works using the stored power during the night; this results in a continuous operation for one week with one transmission every 3 seconds even at 0-lux illuminance. Without developing a new radiofrequency chip or module, commercial low-power devices can be easily adjusted depending on the application by adding appropriate power-control circuits. We are convinced that this design scheme will be effective as a rapid design proposal for IoT services.

  • Improved Differential Fault Analysis of SOSEMANUK with Algebraic Techniques

    Hao CHEN  Tao WANG  Shize GUO  Xinjie ZHAO  Fan ZHANG  Jian LIU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:3
      Page(s):
    811-821

    The differential fault analysis of SOSEMNAUK was presented in Africacrypt in 2011. In this paper, we improve previous work with algebraic techniques which can result in a considerable reduction not only in the number of fault injections but also in time complexity. First, we propose an enhanced method to determine the fault position with a success rate up to 99% based on the single-word fault model. Then, instead of following the design of SOSEMANUK at word levels, we view SOSEMANUK at bit levels during the fault analysis and calculate most components of SOSEMANUK as bit-oriented. We show how to build algebraic equations for SOSEMANUK and how to represent the injected faults in bit-level. Finally, an SAT solver is exploited to solve the combined equations to recover the secret inner state. The results of simulations on a PC show that the full 384 bits initial inner state of SOSEMANUK can be recovered with only 15 fault injections in 3.97h.

  • Effect of Optical Intensity Distribution on Conversion Efficiency of Inverted Organic Photovoltaic Cell

    Toshifumi KOBORI  Norihiko KAMATA  Takeshi FUKUDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    114-117

    An optical intensity distribution under light irradiation in the organic photovoltaic cell affects the absorbance of the active layer, which determines the photovoltaic performance. In this research, we evaluated the optimum thickness of the organic active layer with poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] and [6,6]-phenyl C71-butyric acid methyl ester. The spectral response of external quantum efficiency was good agreement with the simulated optical intensity distribution within a device stack as a function of the position and the wavelength. As a result, the highest photoconversion efficiency of 10.1% was achieved for the inverted device structure.

  • Algebraic Decoding of BCH Codes over Symbol-Pair Read Channels: Cases of Two-Pair and Three-Pair Error Correction

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E99-A No:12
      Page(s):
    2179-2191

    In this paper, we discuss an algebraic decoding of BCH codes over symbol-pair read channels. The channels output overlapping pairs of symbols in storage applications. The pair distance and pair error are used in the channels. We define a polynomial that represents the positions of the pair errors as the error-locator polynomials and a polynomial that represents the positions of the pairs of a received pair vector in conflict as conflict-locator polynomial. In this paper, we propose algebraic methods for correcting two-pair and three-pair errors for BCH codes. First, we show the relation between the error-locator polynomials and the conflict-locator polynomial. Second, we show the relation among these polynomials and the syndromes. Finally, we provide how to correct the pair errors by solving equations including the relational expression by algebraic methods.

  • The Exact Fast Algebraic Immunity of Two Subclasses of the Majority Function

    Deng TANG  Rong LUO  Xiaoni DU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:11
      Page(s):
    2084-2088

    To resist algebraic and fast algebraic attacks, Boolean functions used in stream ciphers should have optimal algebraic immunity and good fast algebraic immunity. One challenge of cryptographic Boolean functions is to determine their ability to resist fast algebraic attacks, which can be measured by their fast algebraic immunities. In this letter, we determine the exact values of fast algebraic immunity of the majority function of 2m and 2m+1 variables. This is the first time that the exact values of the fast algebraic immunity of an infinite class of symmetric Boolean functions with optimal algebraic immunity are determined.

  • Infinite-Horizon Team-Optimal Incentive Stackelberg Games for Linear Stochastic Systems

    Hiroaki MUKAIDANI  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:9
      Page(s):
    1721-1725

    In this paper, an infinite-horizon team-optimal incentive Stackelberg strategy is investigated for a class of stochastic linear systems with many non-cooperative leaders and one follower. An incentive structure is adopted which allows for the leader's team-optimal Nash solution. It is shown that the incentive strategy set can be obtained by solving the cross-coupled stochastic algebraic Riccati equations (CCSAREs). In order to demonstrate the effectiveness of the proposed strategy, a numerical example is solved.

  • A Convolution Theorem for Multiple-Valued Logic Polynomials of a Semigroup Type and Their Fast Multiplication

    Hajime MATSUI  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1025-1033

    In this paper, a convolution theorem which is analogous to the theorem for Fourier transform is shown among a certain type of polynomials. We establish a fast method of the multiplication in a special class of quotient rings of multivariate polynomials over q-element finite field GF(q). The polynomial which we treat is one of expressing forms of the multiple-valued logic function from the product of the semigroups in GF(q) to GF(q). Our results can be applied to the speedup of both software and hardware concerning multiple-valued Boolean logic.

  • On the Nonlinearity and Affine Equivalence Classes of C-F Functions

    Lei SUN  Fangwei FU  Xuang GUANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:6
      Page(s):
    1251-1254

    Since 2008, three different classes of Boolean functions with optimal algebraic immunity have been proposed by Carlet and Feng [2], Wang et al.[8] and Chen et al.[3]. We call them C-F functions, W-P-K-X functions and C-T-Q functions for short. In this paper, we propose three affine equivalent classes of Boolean functions containing C-F functions, W-P-K-X functions and C-T-Q functions as a subclass, respectively. Based on the affine equivalence relation, we construct more classes of Boolean functions with optimal algebraic immunity. Moreover, we deduce a new lower bound on the nonlinearity of C-F functions, which is better than all the known ones.

  • Construction of odd-Variable Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity

    Shaojing FU  Jiao DU  Longjiang QU  Chao LI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:4
      Page(s):
    853-855

    Rotation symmetric Boolean functions (RSBFs) that are invariant under circular translation of indices have been used as components of different cryptosystems. In this paper, odd-variable balanced RSBFs with maximum algebraic immunity (AI) are investigated. We provide a construction of n-variable (n=2k+1 odd and n ≥ 13) RSBFs with maximum AI and nonlinearity ≥ 2n-1-¥binom{n-1}{k}+2k+2k-2-k, which have nonlinearities significantly higher than the previous nonlinearity of RSBFs with maximum AI.

  • Uniformly Random Generation of Floorplans

    Katsuhisa YAMANAKA  Shin-ichi NAKANO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    624-629

    In this paper, we consider the problem of generating uniformly random mosaic floorplans. We propose a polynomial-time algorithm that generates such floorplans with f faces. Two modified algorithms are created to meet additional criteria.

  • Pattern Transformation Method for Digital Camera with Bayer-Like White-RGB Color Filter Array

    Jongjoo PARK  Jongwha CHONG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/08/11
      Vol:
    E98-D No:11
      Page(s):
    2021-2025

    A Bayer-like White-RGB (W-RGB) color filter array (CFA) was invented for overcoming the weaknesses of commonly used RGB based Bayer CFA. In order to reproduce full-color images from the Bayer-like W-RGB CFA, a demosaicing or a CFA interpolation process which estimates missing color channels of raw mosaiced images from CFA is an essential process for single sensor digital cameras having CFA. In the case of Bayer CFA, numerous demosaicing methods which have remarkable performance were already proposed. In order to take advantage of both remarkable performance of demosaicing method for Bayer CFA and the characteristic of high-sensitive Bayer-like W-RGB CFA, a new method of transforming Bayer-like W-RGB to Bayer pattern is required. Therefore, in this letter, we present a new method of transforming Bayer-like W-RGB pattern to Bayer pattern. The proposed method mainly uses the color difference assumption between different channels which can be applied to practical consumer digital cameras.

  • Strong Security of the Strongly Multiplicative Ramp Secret Sharing Based on Algebraic Curves

    Ryutaroh MATSUMOTO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:7
      Page(s):
    1576-1578

    We introduce a coding theoretic criterion for Yamamoto's strong security of the ramp secret sharing scheme. After that, by using it, we show the strong security of the strongly multiplicative ramp secret sharing proposed by Chen et al. in 2008.

  • Another Optimal Binary Representation of Mosaic Floorplans

    Katsuhisa YAMANAKA  Shin-ichi NAKANO  

     
    LETTER

      Vol:
    E98-A No:6
      Page(s):
    1223-1224

    Recently a compact code of mosaic floorplans with ƒ inner face was proposed by He. The length of the code is 3ƒ-3 bits and asymptotically optimal. In this paper, we propose a new code of mosaic floorplans with ƒ inner faces including k boundary faces. The length of our code is at most $3f - rac{k}{2} - 1$ bits. Hence our code is shorter than or equal to the code by He, except for few small floorplans with k=ƒ≤3. Coding and decoding can be done in O(ƒ) time.

  • Balanced Boolean Functions of σƒ>22n+2n+3(n≥4)

    Yu ZHOU  Lin WANG  Weiqiong WANG  Xiaoni DU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:6
      Page(s):
    1313-1319

    The global avalanche characteristics measure the overall avalanche properties of Boolean functions, an n-variable balanced Boolean function of the sum-of-square indicator reaching σƒ=22n+2n+3 is an open problem. In this paper, we prove that there does not exist a balanced Boolean function with σƒ=22n+2n+3 for n≥4, if the hamming weight of one decomposition function belongs to the interval Q*. Some upper bounds on the order of propagation criterion of balanced Boolean functions with n (3≤n≤100) variables are given, if the number of vectors of propagation criterion is equal and less than 7·2n-3-1. Two lower bounds on the sum-of-square indicator for balanced Boolean functions with optimal autocorrelation distribution are obtained. Furthermore, the relationship between the sum-of-squares indicator and nonlinearity of balanced Boolean functions is deduced, the new nonlinearity improves the previously known nonlinearity.

  • Efficiency Improvement in Photovoltaic-Assisted CMOS Rectifier with Symmetric and Voltage-Boost PV-Cells

    Koji KOTANI  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    500-507

    Efficiency of the photovoltaic-assisted UHF CMOS rectifier, which is one example realization of the synergistic ambient energy harvesting concept, has been improved by symmetric PV cell structure. Balanced biasing for the n-channel and p-channel diode-connected MOSFETs realized by the symmetric PV cells effectively compensates Vths and prevents useless leakage current, resulting in the improved efficiency of the rectifier under low input power conditions. In addition, by extending the balanced biasing concept, output-voltage-boosted PV cell structure was proposed and found to be effective for further improving the efficiency of the rectifier. As a result, under a typical indoor lighting condition of 300lx, power conversion efficiency of 25.4% was achieved at -20dBm of 920MHz RF input and 47kΩ output loading conditions, being 3.6 times larger than a conventional rectifier without PV assistance.

  • Axis Communication Method for Algebraic Multigrid Solver

    Akihiro FUJII  Osni MARQUES  

     
    LETTER-Computer System

      Vol:
    E97-D No:11
      Page(s):
    2955-2958

    Communication costs have become a performance bottleneck in many applications, and are a big issue for high performance computing on massively parallel machines. This paper proposes a halo exchange method for unstructured sparse matrix vector products within the algebraic multigrid method, and evaluate it on a supercomputer with mesh/torus networks. In our numerical tests with a Poisson problem, the proposed method accelerates the linear solver more than 14 times with 23040 cores.

  • Dynamic Game Approach of H2/H Control for Stochastic Discrete-Time Systems

    Hiroaki MUKAIDANI  Ryousei TANABATA  Chihiro MATSUMOTO  

     
    PAPER-Systems and Control

      Vol:
    E97-A No:11
      Page(s):
    2200-2211

    In this paper, the H2/H∞ control problem for a class of stochastic discrete-time linear systems with state-, control-, and external-disturbance-dependent noise or (x, u, v)-dependent noise involving multiple decision makers is investigated. It is shown that the conditions for the existence of a strategy are given by the solvability of cross-coupled stochastic algebraic Riccati equations (CSAREs). Some algorithms for solving these equations are discussed. Moreover, weakly-coupled large-scale stochastic systems are considered as an important application, and some illustrative examples are provided to demonstrate the effectiveness of the proposed decision strategies.

  • Linearization Equation Attack on 2-Layer Nonlinear Piece in Hand Method

    Xuyun NIE  Albrecht PETZOLDT  Johannes BUCHMANN  Fagen LI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:9
      Page(s):
    1952-1961

    The Piece in Hand method is a security enhancement technique for Multivariate Public Key Cryptosystems (MPKCs). Since 2004, many types of this method have been proposed. In this paper, we consider the 2-layer nonlinear Piece in Hand method as proposed by Tsuji et al. in 2009. The key point of this method is to introduce an invertible quadratic polynomial map on the plaintext variables to add perturbation to the original MPKC. An additional quadratic map allows the owner of the secret key to remove this perturbation from the system. By our analysis, we find that the security of the enhanced scheme depends mainly on the structure of the quadratic polynomials of this auxiliary map. The two examples proposed by Tsuji et al. for this map can not resist the Linearization Equations attack. Given a valid ciphertext, we can easily get a public key which is equivalent to that of the underlying MPKC. If there exists an algorithm that can recover the plaintext corresponding to a valid ciphertext of the underlying MPKC, we can construct an algorithm that can recover the plaintext corresponding to a valid ciphertext of the enhanced MPKC.

  • Joint Deblurring and Demosaicing Using Edge Information from Bayer Images

    Du Sic YOO  Min Kyu PARK  Moon Gi KANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:7
      Page(s):
    1872-1884

    Most images obtained with imaging sensors contain Bayer patterns and suffer from blurring caused by the lens. In order to convert a blurred Bayer-patterned image into a viewable image, demosaicing and deblurring are needed. These concepts have been major research areas in digital image processing for several decades. Despite their importance, their performance and efficiency are not satisfactory when considered independently. In this paper, we propose a joint deblurring and demosaicing method in which edge direction and edge strength are estimated in the Bayer domain and then edge adaptive deblurring and edge-oriented interpolation are performed simultaneously from the estimated edge information. Experimental results show that the proposed method produces better image quality than conventional algorithms in both objective and subjective terms.

21-40hit(177hit)