The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] APS(165hit)

101-120hit(165hit)

  • Fabrication of the Wireless Systems for Controlling Movements of the Electrical Stimulus Capsule in the Small Intestines

    YeonKwan MOON  JyungHyun LEE  HeeJoon PARK  JuGab LEE  JaeJong RYU  SangHyo WOO  MinKyu KIM  ChulHo WON  TaeWan KIM  JinHo CHO  HyunChul CHOI  

     
    PAPER-Biological Engineering

      Vol:
    E90-D No:2
      Page(s):
    586-593

    Diseases of the gastro-intestinal tract are becoming more prevalent. New techniques and devices, such as the wireless capsule endoscope and the telemetry capsule, that are able to measure the various signals of the digestive organs (temperature, pH, and pressure), have been developed for the observation of the digestive organs. In these capsule devices, there are no methods of moving and grasping them. In order to make a swift diagnosis and to give proper medication, it is necessary to control the moving speed of the capsule. This paper presents a wireless system for the control of movements of an electrical stimulus capsule. This includes an electrical stimulus capsule which can be swallowed and an external transmitting control system. A receiver, a receiving antenna (small multi-loop), a transmitter, and a transmitting antenna (monopole) were designed and fabricated taking into consideration the MPE, power consumption, system size, signal-to-noise ratio and the modulation method. The wireless system, which was designed and implemented for the control of movements of the electrical stimulus capsule, was verified by in-vitro experiments which were performed on the small intestines of a pig. As a result, we found that when the small intestines are contracted by electrical stimuli, the capsule can move to the opposite direction, which means that the capsule can go up or down in the small intestines.

  • Verifier-Local Revocation Group Signature Schemes with Backward Unlinkability from Bilinear Maps

    Toru NAKANISHI  Nobuo FUNABIKI  

     
    PAPER-Signatures

      Vol:
    E90-A No:1
      Page(s):
    65-74

    An approach of membership revocation in group signatures is verifier-local revocation (VLR for short). In this approach, only verifiers are involved in the revocation mechanism, while signers have no involvement. Thus, since signers have no load, this approach is suitable for mobile environments. Although Boneh and Shacham recently proposed a VLR group signature scheme from bilinear maps, this scheme does not satisfy the backward unlikability. The backward unlinkability means that even after a member is revoked, signatures produced by the member before the revocation remain anonymous. In this paper, we propose VLR group signature schemes with the backward unlinkability from bilinear maps.

  • A General Model of Structured Multisignatures with Message Flexibility

    Dan YAMAMOTO  Wakaha OGATA  

     
    PAPER-Signatures

      Vol:
    E90-A No:1
      Page(s):
    83-90

    Multisignature schemes enable us to integrate multiple signatures into a single short signature. In 2001, Mitomi and Miyaji proposed a general model of multisignatures, in which signed messages are flexible and the signing order is verifiable and flexible. Several schemes that satisfy these properties have been proposed, but to the best of our knowledge, their verifiable orders are limited to only sequential structures unlike some order-verifiable (but not message-flexible) multisignatures. We define a signing structure as a labeled tree, which can represent any natural signing order including series-parallel graphs, and formalize a general model of multisignatures that makes good use of our structure. We present a security model for such signatures, give the construction based on the general aggregate signature developed by Boneh et al., and provide a security proof in the random oracle model.

  • Self-Organizing Location Estimation Method Using Received Signal Strength

    Yasuhisa TAKIZAWA  Peter DAVIS  Makoto KAWAI  Hisato IWAI  Akira YAMAGUCHI  Sadao OBANA  

     
    PAPER

      Vol:
    E89-B No:10
      Page(s):
    2687-2695

    The location information of ubiquitous objects is one of the key issues for context-aware systems. Therefore, several positioning systems to obtain precise location information have been researched. However, they have scalability and flexibility problems because they need completely configured space with a large number of sensors. To avoid the problems, we proposed a self-organizing location estimation method that uses ad hoc networks and Self-Organizing Maps and needs no prepared space with a large number of sensors. But, as in other similar precise localization methods, the proposed method needs advanced distance measurements unavailable to conventional wireless communication systems. In this paper, the self-organizing location estimation method's modification for distance measurement that uses received signal strength available to conventional wireless communication systems but which fluctuates uncertainly, is described and location estimation accuracy with the modified method is shown.

  • Analysis of Discretely Controlled Continuous Systems by means of Embedded Maps

    Jorg KRUPAR  Jan LUNZE  Axel SCHILD  Wolfgang SCHWARZ  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2697-2705

    Discretely controlled continuous systems are characterised by their interacting continuous and discrete dynamics, where the continuous subsystem usually represents the system to be controlled and the discrete part describes the controller that switches the continuous system among different operation modes. This paper analyses systems where a perpetual switching of the operation mode has to occur in order to maintain the system's state in a prescribed operating region. It is shown how the analysis of the overall hybrid system can be simplified by using an embedded map that determines the behaviour at the switching instants.

  • Analysis of Electromagnetic Bandgap Based Filters in a Rectangular Waveguide

    Kiyotoshi YASUMOTO  Naoya KOIKE  Hongting JIA  Bhaskar GUPTA  

     
    PAPER

      Vol:
    E89-C No:9
      Page(s):
    1324-1329

    Electromagnetic crystals formed by vertical full posts stacked in a rectangular waveguide are analyzed using the image theory and the lattice sums technique. It is shown that the frequency response of the crystals consisting of circular posts can be obtained by a simpler matrix calculus based on the one-dimensional lattice sums, the T-matrix of a circular cylinder in free space, and the generalized reflection and transmission matrices.

  • Influence of NH3-Plasma Pretreatment before Si3N4 Passivation Film Deposition on Current Collapse in AlGaN/GaN-HEMTs

    Shinichi HOSHI  Toshiharu MARUI  Masanori ITOH  Yoshiaki SANO  Shouhei SEKI  

     
    PAPER-GaN-Based Devices

      Vol:
    E89-C No:7
      Page(s):
    1052-1056

    In AlGaN/GaN high electron mobility transistors (HEMTs), Si3N4 passivation film brings effective improvements in the current collapse phenomenon, however, the suppression of this phenomenon in a high voltage operation can not be achieved in only the Si3N4 deposition process. In order to solve this problem, we have demonstrated an NH3-plasma surface pretreatment in the chamber of plasma enhanced chemical vapor deposition (PE-CVD) just before Si3N4 deposition process. We found that the optimized NH3-plasma pretreatment could improve the current collapse as compared with only the Si3N4 deposition and an excessive pretreatment made it worse adversely in AlGaN/GaN-HEMTs. It was confirmed by Auger electron spectroscopy (AES) analysis that the optimized NH3-plasma pretreatment decreased the carbon contamination such as hydrocarbon on the AlGaN surface and the excessive pretreatment degraded the stoicheiometric composition of AlGaN surface.

  • Quick Data-Retrieving for U-APSD in IEEE802.11e WLAN Networks

    Shojiro TAKEUCHI  Kaoru SEZAKI  Yasuhiko YASUDA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1919-1929

    The IEEE802.11e is a standard developed by a Task Group E of the IEEE802.11 working group and defines a MAC protocol, which provides EDCA (enhanced distributed channel access) and HCCA (HCF controlled channel access) to support differentiation service over WLAN (wireless LAN). In IEEE802.11e WLAN, real-time application such as VoIP (Voice over IP) can have more chances to access the WM (wireless medium) than non real-time application. In addition to QoS support in WLAN, power consumption is a critical issue when WLAN is used in handheld devices. For power saving in the use of real-time applications like VoIP under EDCA, U-APSD (Unscheduled Automatic Power Save Delivery) was proposed in [2] and [4]. In fact, it can save power consumption and works well when it is used for bi-directional voice connections generated at constant bit rate. However, when it is used for real-time applications like ON-OFF traffic, buffering delay at AP (access point) increases. To reduce the buffering delay, this paper proposes two mechanisms. Simulation results show that they can alleviate buffering delay generated at AP.

  • Telemetry Capsule for Pressure Monitoring in the Gastrointestinal Tract

    Ki-Won YOON  Sang-Hyo WOO  Jyung-Hyun LEE  Young-Ho YOON  Min-Kyu KIM  Chul-Ho WON  Hyun-Chul CHOI  Jin-Ho CHO  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1699-1700

    In this paper, the pressure monitoring telemetry system has been designed and implemented for an accurate pressure measure-ment inside the gastrointestinal tract with minimizing pain and inconvenience. The system is composed of a miniaturized pres-sure measurement capsule and an external receiver. The per-formance of the telemetry capsule for monitoring pressure in the gastrointestinal tract is demonstrated by the results of animal in-vivo experiments.

  • A Hybrid Fine-Tuned Multi-Objective Memetic Algorithm

    Xiuping GUO  Genke YANG  Zhiming WU  Zhonghua HUANG  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E89-A No:3
      Page(s):
    790-797

    In this paper, we propose a hybrid fine-tuned multi-objective memetic algorithm hybridizing different solution fitness evaluation methods for global exploitation and exploration. To search across all regions in objective space, the algorithm uses a widely diversified set of weights at each generation, and employs a simulated annealing to optimize each utility function. For broader exploration, a grid-based technique is adopted to discover the missing nondominated regions on existing tradeoff surface, and a Pareto-based local perturbation is performed to reproduce incrementing solutions trying to fill up the discontinuous areas. Additional advanced feature is that the procedure is made dynamic and adaptive to the online optimization conditions based on a function of improvement ratio to obtain better stability and convergence of the algorithm. Effectiveness of our approach is shown by applying it to multi-objective 0/1 knapsack problem (MOKP).

  • Enumeration Methods for Repeatedly Solving Multidimensional Knapsack Sub-Problems

    Ross J.W. JAMES  Yuji NAKAGAWA  

     
    PAPER-Algorithm Theory

      Vol:
    E88-D No:10
      Page(s):
    2329-2340

    In order to solve large Multidimensional Knapsack problems we examine a technique which decomposes a problem instance into two parts. The first part is solved using a traditional technique, such as Dynamic Programming, to reduce the number of variables in the problem by creating a single variable with many non-dominated states. In the second part the remaining variables are determined by an algorithm that repeatedly enumerates them with different constraint and objective requirements. The constraint and objective requirements are imposed by the various non-dominated states of the variable created in the first part of this technique. The main advantage of this approach is that when memory requirements prevent traditional techniques solving a problem instance, the enumeration provides a much less memory-intensive method, enabling a solution to be found. Two approaches are proposed for repeatedly enumerating a 0/1 Multidimensional Knapsack problem. It is demonstrated how these enumeration methods, in conjunction with the Modular Approach, were used to find the optimal solutions to a number of 500-variable, 5-constraint Multidimensional Knapsack problem instances proposed in the literature. The exact solutions to these instances were previously unknown.

  • New Method of Moving Control for Wireless Endoscopic Capsule Using Electrical Stimuli

    Hee-Joon PARK  Jyung-Hyun LEE  Yeon-Kwan MOON  Young-Ho YOON  Chul-Ho WON  Hyun-Chul CHOI  Jin-Ho CHO  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1476-1480

    In order to control the moving speed of an endoscopic capsule in the human intestine, electrical stimulation method is proposed in this paper. The miniaturized endoscopic capsule with the function of various electrical stimulations has been designed and implemented. An in-vivo animal experiment has been performed to show the ability of controlling the movement speed of the endoscopic capsule according to the level of electrical stimulation. In-vivo experiments were performed by inserting the implemented capsule into a pig's intestinal tract. From the experimental results, the activation of peristaltic movement and the relationship between the moving speed of capsule and the stimulation amplitude could be found. It is shown that the moving speed of capsule in the intestine can be controlled by adjustment of the stimulation level applied in the capsule electrodes. The results of the in-vivo experiment verify that the degree of contraction in the intestinal tract is closely related with the level of stimulating electrical voltage, suggesting that the moving speed of capsule in the human gastrointestinal tract can be controlled by externally adjusting the amplitude of stimulating pulse signal.

  • Siphon-Trap-Based Algorithms for Efficiently Computing Petri Net Invariants

    Akihiro TAGUCHI  Atsushi IRIBOSHI  Satoshi TAOKA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    964-971

    A siphon-trap(ST) of a Petri net N = (P,T,E,α,β) is defined as a set S of places such that, for any transition t, there is an edge from t to a place of S if and only if there is an edge from a place of S to t. A P-invariant is a |P|-dimensional vector Y with YtA = for the place-transition incidence matrix A of N. The Fourier-Motzkin method is well-known for computing all such invariants. This method, however, has a critical deficiency such that, even if a given Perti net N has any invariant, it is likely that no invariants are output because of memory overflow in storing intermediary vectors as candidates for invariants. In this paper, we propose an algorithm STFM_N for computing minimal-support nonnegative integer invariants: it tries to decrease the number of such candidate vectors in order to overcome this deficiency, by restricting computation of invariants to siphon-traps. It is shown, through experimental results, that STFM_N has high possibility of finding, if any, more minimal-support nonnegative integer invariants than any existing algorithm.

  • Dynamic and Adaptive Morphing of Three-Dimensional Mesh Using Control Maps

    Tong-Yee LEE  Chien-Chi HUANG  

     
    PAPER-Computer Graphics

      Vol:
    E88-D No:3
      Page(s):
    646-651

    This paper describes a dynamic and adaptive scheme for three-dimensional mesh morphing. Using several control maps, the connectivity of intermediate meshes is dynamically changing and the mesh vertices are adaptively modified. The 2D control maps in parametric space that include curvature map, area deformation map and distance map, are used to schedule the inserting and deleting vertices in each frame. Then, the positions of vertices are adaptively moved to better positions using weighted centroidal voronoi diagram (WCVD) and a Delaunay triangulation is finally used to determine the connectivity of mesh. In contrast to most previous work, the intermediate mesh connectivity gradually changes and is much less complicated. We demonstrate several examples of aesthetically pleasing morphs created by the proposed method.

  • Large Deviation for Chaotic Binary Sequences Generated by Nonlinear Maps and Threshold Functions

    Yasutada OOHAMA  Tohru KOHDA  

     
    PAPER-Stochastic Process

      Vol:
    E87-A No:10
      Page(s):
    2555-2563

    In this paper we study the large deviation property for chaotic binary sequences generated by one-dimensional maps displaying chaos and thresholds functions. We deal with the case when nonlinear maps are the r-adic maps. The large deviation theory for dynamical systems is useful for investigating this problem.

  • A Simple Learning Algorithm for Network Formation Based on Growing Self-Organizing Maps

    Hiroki SASAMURA  Toshimichi SAITO  Ryuji OHTA  

     
    LETTER-Nonlinear Problems

      Vol:
    E87-A No:10
      Page(s):
    2807-2810

    This paper presents a simple learning algorithm for network formation. The algorithm is based on self-organizing maps with growing cell structures and can adapt input data which correspond to nodes of the network. In basic numerical experiments, as a parameter is selected suitably, our algorithm can generate network having small-world-like structure. Such network structure appears in some natural networks and has advantages in practical systems.

  • Global and Local Feature Extraction by Natural Elastic Nets

    Jiann-Ming WU  Zheng-Han LIN  

     
    LETTER-Pattern Recognition

      Vol:
    E87-D No:9
      Page(s):
    2267-2271

    This work explores generative models of handwritten digit images using natural elastic nets. The analysis aims to extract global features as well as distributed local features of handwritten digits. These features are expected to form a basis that is significant for discriminant analysis of handwritten digits and related analysis of character images or natural images.

  • Dermoscopic Image Segmentation by a Self-Organizing Map and Fuzzy Genetic Clustering

    Harald GALDA  Hajime MURAO  Hisashi TAMAKI  Shinzo KITAMURA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E87-D No:9
      Page(s):
    2195-2203

    Malignant melanoma is a skin cancer that can be mistaken as a harmless mole in the early stages and is curable only in these early stages. Therefore, dermatologists use a microscope that shows the pigment structures of the skin to classify suspicious skin lesions as malignant or benign. This microscope is called "dermoscope." However, even when using a dermoscope a malignant skin lesion can be mistaken as benign or vice versa. Therefore, it seems desirable to analyze dermoscopic images by computer to classify the skin lesion. Before a dermoscopic image can be classified, it should be segmented into regions of the same color. For this purpose, we propose a segmentation method that automatically determines the number of colors by optimizing a cluster validity index. Cluster validity indices can be used to determine how accurately a partition represents the "natural" clusters of a data set. Therefore, cluster validity indices can also be applied to evaluate how accurately a color image is segmented. First the RGB image is transformed into the L*u*v* color space, in which Euclidean vector distances correspond to differences of visible colors. The pixels of the L*u*v* image are used to train a self-organizing map. After completion of the training a genetic algorithm groups the neurons of the self-organizing map into clusters using fuzzy c-means. The genetic algorithm searches for a partition that optimizes a fuzzy cluster validity index. The image is segmented by assigning each pixel of the L*u*v* image to the nearest neighbor among the cluster centers found by the genetic algorithm. A set of dermoscopic images is segmented using the method proposed in this research and the images are classified based on color statistics and textural features. The results indicate that the method proposed in this research is effective for the segmentation of dermoscopic images.

  • Density Attack to the Knapsack Cryptosystems with Enumerative Source Encoding

    Keiji OMURA  Keisuke TANAKA  

     
    PAPER-Information Security

      Vol:
    E87-A No:6
      Page(s):
    1564-1569

    We analyze the Lagarias-Odlyzko low-density attack precisely, and show that this low-density attack can be applied to the Chor-Rivest and the Okamoto-Tanaka-Uchiyama cryptosystemes, which are considered to be secure against the low-density attack. According to our analysis, these schemes turn out to be no longer secure against the low-density attack.

  • Determining Consistent Global Checkpoints of a Distributed Computation

    Dakshnamoorthy MANIVANNAN  

     
    PAPER-Computer Systems

      Vol:
    E87-D No:1
      Page(s):
    164-174

    Determining consistent global checkpoints of a distributed computation has applications in the areas such as rollback recovery, distributed debugging, output commit and others. Netzer and Xu introduced the notion of zigzag paths and presented necessary and sufficient conditions for a set of checkpoints to be part of a consistent global checkpoint. This result also reveals that determining the existence of zigzag paths between checkpoints is crucial for determining consistent global checkpoints. Recent research also reveals that determining zigzag paths on-line is not possible. In this paper, we present an off-line method for determining the existence of zigzag paths between checkpoints.

101-120hit(165hit)