The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] APS(165hit)

1-20hit(165hit)

  • Fresh Tea Sprouts Segmentation via Capsule Network Open Access

    Chunhua QIAN  Xiaoyan QIN  Hequn QIANG  Changyou QIN  Minyang LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/01/17
      Vol:
    E107-D No:5
      Page(s):
    728-731

    The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.

  • High-Density Knapsack Cryptosystem Using Shifted-Odd and Super-Increasing Sequence

    Minami SATO  Sosuke MINAMOTO  Ryuichi SAKAI  Yasuyuki MURAKAMI  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2023/08/04
      Vol:
    E107-A No:3
      Page(s):
    519-522

    It is proven that many public-key cryptosystems would be broken by the quantum computer. The knapsack cryptosystem which is based on the subset sum problem has the potential to be a quantum-resistant cryptosystem. Murakami and Kasahara proposed a SOSI trapdoor sequence which is made by combining shifted-odd (SO) and super-increasing (SI) sequence in the modular knapsack cryptosystem. This paper firstly show that the key generation method could not achieve a secure density against the low-density attack. Second, we propose a high-density key generation method and confirmed that the proposed scheme is secure against the low-density attack.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Fusion-Based Edge and Color Recovery Using Weighted Near-Infrared Image and Color Transmission Maps for Robust Haze Removal

    Onhi KATO  Akira KUBOTA  

     
    PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-D No:10
      Page(s):
    1661-1672

    Various haze removal methods based on the atmospheric scattering model have been presented in recent years. Most methods have targeted strong haze images where light is scattered equally in all color channels. This paper presents a haze removal method using near-infrared (NIR) images for relatively weak haze images. In order to recover the lost edges, the presented method first extracts edges from an appropriately weighted NIR image and fuses it with the color image. By introducing a wavelength-dependent scattering model, our method then estimates the transmission map for each color channel and recovers the color more naturally from the edge-recovered image. Finally, the edge-recovered and the color-recovered images are blended. In this blending process, the regions with high lightness, such as sky and clouds, where unnatural color shifts are likely to occur, are effectively estimated, and the optimal weighting map is obtained. Our qualitative and quantitative evaluations using 59 pairs of color and NIR images demonstrated that our method can recover edges and colors more naturally in weak haze images than conventional methods.

  • A Novel Discriminative Dictionary Learning Method for Image Classification

    Wentao LYU  Di ZHOU  Chengqun WANG  Lu ZHANG  

     
    PAPER-Image

      Pubricized:
    2022/12/14
      Vol:
    E106-A No:6
      Page(s):
    932-937

    In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.

  • A Hybrid Integer Encoding Method for Obtaining High-Quality Solutions of Quadratic Knapsack Problems on Solid-State Annealers

    Satoru JIMBO  Daiki OKONOGI  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2022/05/26
      Vol:
    E105-D No:12
      Page(s):
    2019-2031

    For formulating Quadratic Knapsack Problems (QKPs) into the form of Quadratic Unconstrained Binary Optimization (QUBO), it is necessary to introduce an integer variable, which converts and incorporates the knapsack capacity constraint into the overall energy function. In QUBO, this integer variable is encoded with auxiliary binary variables, and the encoding method used for it affects the behavior of Simulated Annealing (SA) significantly. For improving the efficiency of SA for QKP instances, this paper first visualized and analyzed their annealing processes encoded by conventional binary and unary encoding methods. Based on this analysis, we proposed a novel hybrid encoding (HE), getting the best of both worlds. The proposed HE obtained feasible solutions in the evaluation, outperforming the others in small- and medium-scale models.

  • Propagation Loss Model with Human Body Shielding for High-Altitude Platform Station Communications

    Hideki OMOTE  Akihiro SATO  Sho KIMURA  Shoma TANAKA  HoYu LIN  Takashi HIKAGE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/11
      Vol:
    E105-B No:10
      Page(s):
    1219-1230

    In recent years, High-Altitude Platform Station (HAPS) has become the most interesting topic for next generation mobile communication systems, because platforms such as Unmanned Aerial Vehicles (UAVs), balloons, airships can provide ultra-wide coverage, up to 200km in diameter, from altitudes of around 20 km. It also offers resiliency to damage caused by disasters and so ensures the stability and reliability of mobile communications. In order to further integrate HAPS with existing terrestrial mobile communication networks in providing mobile services to users, radio wave propagation models such as terrain, vegetation loss, human shielding loss, building entry loss, urban/suburban areas must be taken into consideration when designing HAPS-based cell configurations. This paper proposes a human body shielding propagation loss model that considers the basic signal attenuation by the human body at high elevation angles. It also analyzes the effect of changes in actual urban/suburban environments due to the arrival of multipath radio waves for HAPS communications in the frequency range of 0.7 to 3.3GHz. Measurements in actual urban/rural environments in Japan and actual stratospheric base station measurements in Kenya are carried out to confirm the validity of the proposed model. Since the measured results agree well with the results predicted by the proposed model, the model is good enough to provide estimates of human loss in various environments.

  • Online Removable Knapsack Problem for Integer-Sized Unweighted Items Open Access

    Hiroshi FUJIWARA  Kanaho HANJI  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1195-1202

    In the online removable knapsack problem, a sequence of items, each labeled with its value and its size, is given one by one. At each arrival of an item, a player has to decide whether to put it into a knapsack or to discard it. The player is also allowed to discard some of the items that are already in the knapsack. The objective is to maximize the total value of the knapsack. Iwama and Taketomi gave an optimal algorithm for the case where the value of each item is equal to its size. In this paper we consider a case with an additional constraint that the capacity of the knapsack is a positive integer N and that the sizes of items are all integral. For each positive integer N, we design an algorithm and prove its optimality. It is revealed that the competitive ratio is not monotonic with respect to N.

  • Diabetes Noninvasive Recognition via Improved Capsule Network

    Cunlei WANG  Donghui LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:8
      Page(s):
    1464-1471

    Noninvasive recognition is an important trend in diabetes recognition. Unfortunately, the accuracy obtained from the conventional noninvasive recognition methods is low. This paper proposes a novel Diabetes Noninvasive Recognition method via the plantar pressure image and improved Capsule Network (DNR-CapsNet). The input of the proposed method is a plantar pressure image, and the output is the recognition result: healthy or possibly diabetes. The ResNet18 is used as the backbone of the convolutional layers to convert pixel intensities to local features in the proposed DNR-CapsNet. Then, the PrimaryCaps layer, SecondaryCaps layer, and DiabetesCaps layer are developed to achieve the diabetes recognition. The semantic fusion and locality-constrained dynamic routing are also developed to further improve the recognition accuracy in our method. The experimental results indicate that the proposed method has a better performance on diabetes noninvasive recognition than the state-of-the-art methods.

  • Position Estimation for the Capsule Endoscope Using High-Definition Numerical Human Body Model and Measurement Open Access

    Akihiro YOSHITAKE  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/01/11
      Vol:
    E105-B No:7
      Page(s):
    848-855

    Currently, wireless power transmission technology is being developed for capsule endoscopes. By removing the battery, the capsule endoscope is miniaturized, the number of images that can be taken increases, and the risk of harmful substances leaking from the battery when it is damaged inside the body is avoided. Furthermore, diagnostic accuracy is improved by adjusting the directivity of radio waves according to the position of the capsule endoscope to improve efficiency and adjusting the number of images to be taken according to position by real-time position estimation. In this study, we report the result of position estimation in a high-definition numerical human body model and in an experiment on an electromagnetic phantom.

  • Image Quality Improvement for Capsule Endoscopy Based on Compressed Sensing with K-SVD Dictionary Learning

    Yuuki HARADA  Daisuke KANEMOTO  Takahiro INOUE  Osamu MAIDA  Tetsuya HIROSE  

     
    LETTER-Image

      Pubricized:
    2021/10/01
      Vol:
    E105-A No:4
      Page(s):
    743-747

    Reducing the power consumption of capsule endoscopy is essential for its further development. We introduce K-SVD dictionary learning to design a dictionary for sparse coding, and improve reconstruction accuracy of capsule endoscopic images captured using compressed sensing. At a compression ratio of 20%, the proposed method improves image quality by approximately 4.4 dB for the peak signal-to-noise ratio.

  • Cylindrical Massive MIMO System with Low-Complexity Angle-Based User Selection for High-Altitude Platform Stations

    Koji TASHIRO  Kenji HOSHINO  Atsushi NAGATE  

     
    PAPER-Adaptive Array Antennas/MIMO

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    449-460

    High-altitude platform stations (HAPSs) are recognized as a promising technology for coverage extension in the sixth generation (6G) mobile communications and beyond. The purpose of this study is to develop a HAPS system with a coverage radius of 100km and high capacity by focusing on the following two aspects: array antenna structure and user selection. HAPS systems must jointly use massive multiple-input multiple-output (mMIMO) and multiuser MIMO techniques to increase their capacity. However, the coverage achieved by a conventional planar array antenna is limited to a circular area with a radius of only tens of kilometers. A conventional semi-orthogonal user selection (SUS) scheme based on the orthogonality of channel vectors achieves high capacity, but it has high complexity. First, this paper proposes a cylindrical mMIMO system to achieve an ultra-wide coverage radius of 100km and high capacity. Second, this paper presents a novel angle-based user selection (AUS) scheme, where a user selection problem is formulated as a maximization of the minimum angular difference between users over all user groups. Finally, a low-complexity suboptimal algorithm (SA) for AUS is also proposed. Assuming an area with a 100km radius, simulation results demonstrate that the proposed cylindrical mMIMO system improves the signal-to-interference-plus-noise ratio by approx. 12dB at the boundary of the area, and it achieves approx. 1.5 times higher capacity than the conventional mMIMO which uses a planar array antenna. In addition, the results show that the proposed AUS scheme improves the lower percentiles in the system capacity distribution compared with SUS and basic random user selection. Furthermore, the computational complexity of the proposed SA is in the order of only 1/4000 that of SUS.

  • An Algorithm for Single Snapshot 2D-DOA Estimation Based on a Three-Parallel Linear Array Model Open Access

    Shiwen LIN  Yawen ZHOU  Weiqin ZOU  Huaguo ZHANG  Lin GAO  Hongshu LIAO  Wanchun LI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/10/05
      Vol:
    E105-A No:4
      Page(s):
    673-681

    Estimating the spatial parameters of the signals by using the effective data of a single snapshot is essential in the field of reconnaissance and confrontation. Major drawback of existing algorithms is that its constructed covariance matrix has a great degree of rank loss. The performance of existing algorithms gets degraded with low signal-to-noise ratio. In this paper, a three-parallel linear array based algorithm is proposed to achieve two-dimensional direction of arrival estimates in a single snapshot scenario. The key points of the proposed algorithm are: 1) construct three pseudo matrices with full rank and no rank loss by using the single snapshot data from the received signal model; 2) by using the rotation relation between pseudo matrices, the matched 2D-DOA is obtained with an efficient parameter matching method. Main objective of this work is on improving the angle estimation accuracy and reducing the loss of degree of freedom in single snapshot 2D-DOA estimation.

  • Firewall Traversal Method by Pseudo-TCP Encapsulation

    Keigo TAGA  Junjun ZHENG  Koichi MOURI  Shoichi SAITO  Eiji TAKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    105-115

    A wide range of communication protocols has recently been developed to address service diversification. At the same time, firewalls (FWs) are installed at the boundaries between internal networks, such as those owned by companies and homes, and the Internet. In general, FWs are configured as whitelists and release only the port corresponding to the service to be used and block communication from other ports. In a previous study, we proposed a method for traversing a FW and enabling communication by inserting a pseudo-transmission control protocol (TCP) header imitating HTTPS into a packet, which normally would be blocked by the FW. In that study, we confirmed the efficiency of the proposed method via its implementation and experiments. Even though common encapsulating techniques work on end-nodes, the previous implementation worked on the relay node assuming a router. Further, middleboxes, which overwrite L3 and L4 headers on the Internet, need to be taken into consideration. Accordingly, we re-implemented the proposed method into an end-node and added a feature countering a typical middlebox, i.e., NAPT, into our implementation. In this paper, we describe the functional confirmation and performance evaluations of both versions of the proposed method.

  • Analysis and Acceleration of the Quadratic Knapsack Problem on an Ising Machine Open Access

    Matthieu PARIZY  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1526-1535

    The binary quadratic knapsack problem (QKP) aims at optimizing a quadratic cost function within a single knapsack. Its applications and difficulty make it appealing for various industrial fields. In this paper we present an efficient strategy to solve the problem by modeling it as an Ising spin model using an Ising machine to search for its ground state which translates to the optimal solution of the problem. Secondly, in order to facilitate the search, we propose a novel technique to visualize the landscape of the search and demonstrate how difficult it is to solve QKP on an Ising machine. Finally, we propose two software solution improvement algorithms to efficiently solve QKP on an Ising machine.

  • Capsule Network with Shortcut Routing Open Access

    Thanh Vu DANG  Hoang Trong VO  Gwang Hyun YU  Jin Young KIM  

     
    PAPER-Image

      Pubricized:
    2021/01/27
      Vol:
    E104-A No:8
      Page(s):
    1043-1050

    Capsules are fundamental informative units that are introduced into capsule networks to manipulate the hierarchical presentation of patterns. The part-hole relationship of an entity is learned through capsule layers, using a routing-by-agreement mechanism that is approximated by a voting procedure. Nevertheless, existing routing methods are computationally inefficient. We address this issue by proposing a novel routing mechanism, namely “shortcut routing”, that directly learns to activate global capsules from local capsules. In our method, the number of operations in the routing procedure is reduced by omitting the capsules in intermediate layers, resulting in lighter routing. To further address the computational problem, we investigate an attention-based approach, and propose fuzzy coefficients, which have been found to be efficient than mixture coefficients from EM routing. Our method achieves on-par classification results on the Mnist (99.52%), smallnorb (93.91%), and affNist (89.02%) datasets. Compared to EM routing, our fuzzy-based and attention-based routing methods attain reductions of 1.42 and 2.5 in terms of the number of calculations.

  • Graph Based Wave Function Collapse Algorithm for Procedural Content Generation in Games

    Hwanhee KIM  Teasung HAHN  Sookyun KIM  Shinjin KANG  

     
    PAPER-Computer Graphics

      Pubricized:
    2020/05/20
      Vol:
    E103-D No:8
      Page(s):
    1901-1910

    This paper describes graph-based Wave Function Collapse algorithm for procedural content generation. The goal of this system is to enable a game designer to procedurally create key content elements in the game level through simple association rule input. To do this, we propose a graph-based data structure that can be easily integrated with a navigation mesh data structure in a three-dimensional world. With our system, if the user inputs the minimum association rule, it is possible to effectively perform procedural content generation in the three-dimensional world. The experimental results show that the Wave Function Collapse algorithm, which is a texture synthesis algorithm, can be extended to non-grid shape content with high controllability and scalability.

  • The Evaluation of the Interface Properties of PdEr-Silicide on Si(100) Formed with TiN Encapsulating Layer and Dopant Segregation Process

    Rengie Mark D. MAILIG  Min Gee KIM  Shun-ichiro OHMI  

     
    PAPER-Electronic Materials

      Vol:
    E103-C No:6
      Page(s):
    286-292

    In this paper, the effects of the TiN encapsulating layer and the dopant segregation process on the interface properties and the Schottky barrier height reduction of PdEr-silicide/n-Si(100) were investigated. The results show that controlling the initial location of the boron dopants by adding the TiN encapsulating layer lowered the Schottky barrier height (SBH) for hole to 0.20 eV. Furthermore, the density of interface states (Dit) on the order of 1011eV-1cm-2 was obtained indicating that the dopant segregation process with TiN encapsulating layer effectively annihilated the interface states.

  • Dual Network Fusion for Person Re-Identification

    Lin DU  Chang TIAN  Mingyong ZENG  Jiabao WANG  Shanshan JIAO  Qing SHEN  Guodong WU  

     
    LETTER-Image

      Vol:
    E103-A No:3
      Page(s):
    643-648

    Feature learning based on deep network has been verified as beneficial for person re-identification (Re-ID) in recent years. However, most researches use a single network as the baseline, without considering the fusion of different deep features. By analyzing the attention maps of different networks, we find that the information learned by different networks can complement each other. Therefore, a novel Dual Network Fusion (DNF) framework is proposed. DNF is designed with a trunk branch and two auxiliary branches. In the trunk branch, deep features are cascaded directly along the channel direction. One of the auxiliary branch is channel attention branch, which is used to allocate weight for different deep features. Another one is multi-loss training branch. To verify the performance of DNF, we test it on three benchmark datasets, including CUHK03NP, Market-1501 and DukeMTMC-reID. The results show that the effect of using DNF is significantly better than a single network and is comparable to most state-of-the-art methods.

  • Rhythm Tap Technique for Cross-Device Interaction Enabling Uniform Operation for Various Devices Open Access

    Hirohito SHIBATA  Junko ICHINO  Shun'ichi TANO  Tomonori HASHIYAMA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/09/19
      Vol:
    E102-D No:12
      Page(s):
    2515-2523

    This paper proposes a novel interaction technique to transfer data across various types of digital devices in uniform a manner and to allow specifying what kind of data should be sent. In our framework, when users tap multiple devices rhythmically, data corresponding to the rhythm (transfer type) are transferred from a device tapped in the first tap (source device) to the other (target device). It is easy to operate, applicable to a wide range of devices, and extensible in a sense that we can adopt new transfer types by adding new rhythms. Through a subjective evaluation and a simulation, we had a prospect that our approach would be feasible. We also discuss suggestions and limitation to implement the technique.

1-20hit(165hit)