The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

6081-6100hit(20498hit)

  • Real-Time Face Detection and Recognition via Local Binary Pattern Plus Sample Selective Biomimetic Pattern Recognition

    Yikui ZHAI  Junying GAN  Jinwen LI  Junying ZENG  Ying XU  

     
    PAPER-Face Perception and Recognition

      Vol:
    E96-D No:3
      Page(s):
    523-530

    Due to security demand of society development, real-time face recognition has been receiving more and more attention nowadays. In this paper, a real-time face recognition system via Local Binary Pattern (LBP) plus Improved Biomimetic Pattern Recognition (BPR) has been proposed. This system comprises three main steps: real-time color face detection process, feature extraction process and recognition process. Firstly, a color face detector is proposed to detect face with eye alignment and simultaneous performance; while in feature extraction step, LBP method is adopted to eliminate the negative effect of the light heterogeneity. Finally, an improved BPR method with Selective Sampling construction is applied to the recognition system. Experiments on our established database named WYU Database, PUT Database and AR Database show that this real-time face recognition system can work with high efficiency and has achieved comparable performance with the state-of-the-art systems.

  • Secure and Lightweight Localization Method for Wireless Sensor Networks

    Myung-Ho PARK  Ki-Gon NAM  Jin Seok KIM  Dae Hyun YUM  Pil Joong LEE  

     
    LETTER-Information Network

      Vol:
    E96-D No:3
      Page(s):
    723-726

    With the increased deployment of wireless sensor networks (WSNs) in location-based services, the need for accurate localization of sensor nodes is gaining importance. Sensor nodes in a WSN localize themselves with the help of anchors that know their own positions. Some anchors may be malicious and provide incorrect information to the sensor nodes. In this case, accurate localization of a sensor node may be severely affected. In this study, we propose a secure and lightweight localization method. In the proposed method, uncertainties in the estimated distance between the anchors and a sensor node are taken into account to improve localization accuracy. That is, we minimize the weighted summation of the residual squares. Simulation results show that our method is very effective for accurate localization of sensor nodes. The proposed method can accurately localize a sensor node in the presence of malicious anchors and it is computationally efficient.

  • Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering

    Ildefons MAGRANS DE ABRIL  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:3
      Page(s):
    742-745

    This letter presents the ideas and methods of the winning solution* for the Kaggle Algorithmic Trading Challenge. This analysis challenge took place between 11th November 2011 and 8th January 2012, and 264 competitors submitted solutions. The objective of this competition was to develop empirical predictive models to explain stock market prices following a liquidity shock. The winning system builds upon the optimal composition of several models and a feature extraction and selection strategy. We used Random Forest as a modeling technique to train all sub-models as a function of an optimal feature set. The modeling approach can cope with highly complex data having low Maximal Information Coefficients between the dependent variable and the feature set and provides a feature ranking metric which we used in our feature selection algorithm.

  • A Delay Evaluation Circuit for Analog BIST Function

    Zhengliang LV  Shiyuan YANG  Hong WANG  Linda MILOR  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:3
      Page(s):
    393-401

    Process variation causes significant fluctuations in the timing performance of analog circuits, which causes a fraction of circuits to fail specifications. By testing the delay-performance, we can recognize the failed circuits during production testing. In this paper, we have proposed a low overhead and process tolerant delay evaluation circuit for built-in self test (BIST) function for analog differential circuits. This circuit contains a delay generation cell, an input differential signal generation cell, a delay matching cell, a sample-hold circuit, and a comparator. This circuit was implemented with 0.18 µm CMOS process. Simulation results over process variation, devices mismatch and layout parasitics, but without silicon measurement, show that the accuracy in delay detection is within 5 ps. A case study was done over a feed-forward equalizer (FFE). A typical use of this circuit is testing the delay of various FIR (Finite Impulse Response) filters.

  • Optimal Power Allocation with Max-Min Fairness in a Non-orthogonal AF Relay-Assisted Uplink Transmission

    Peng GONG  Ping LI  Duk Kyung KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:3
      Page(s):
    728-731

    In this letter, unlike the previous work in [2], the optimal power allocation in a non-orthogonal, amplify-and-forward (AF) relay-assisted transmission is investigated in the uplink. Here, the inter-user-interference among the signals from MTs and relays exists due to non-zero interference suppression factor (ISF), i.e., finite spreading factor. In this letter, we show that the optimal solution to achieve a 'max-min fairness' among mobile terminals can be alternatively obtained by solving its inverse problem. The impact of various ISFs as well as the Jain's fairness is investigated in comparison with the equal power allocation.

  • Risk Assessment of a Portfolio Selection Model Based on a Fuzzy Statistical Test

    Pei-Chun LIN  Junzo WATADA  Berlin WU  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:3
      Page(s):
    579-588

    The objective of our research is to build a statistical test that can evaluate different risks of a portfolio selection model with fuzzy data. The central points and radiuses of fuzzy numbers are used to determine the portfolio selection model, and we statistically evaluate the best return by a fuzzy statistical test. Empirical studies are presented to illustrate the risk evaluation of the portfolio selection model with interval values. We conclude that the fuzzy statistical test enables us to evaluate a stable expected return and low risk investment with different choices for k, which indicates the risk level. The results of numerical examples show that our method is suitable for short-term investments.

  • Reconstruction Algorithms for Permutation Graphs and Distance-Hereditary Graphs

    Masashi KIYOMI  Toshiki SAITOH  Ryuhei UEHARA  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    426-432

    PREIMAGE CONSTRUCTION problem by Kratsch and Hemaspaandra naturally arose from the famous graph reconstruction conjecture. It deals with the algorithmic aspects of the conjecture. We present an O(n8) time algorithm for PREIMAGE CONSTRUCTION on permutation graphs and an O(n4(n+m)) time algorithm for PREIMAGE CONSTRUCTION on distance-hereditary graphs, where n is the number of graphs in the input, and m is the number of edges in a preimage. Since each graph of the input has n-1 vertices and O(n2) edges, the input size is O(n3) (, or O(nm)). There are polynomial time isomorphism algorithms for permutation graphs and distance-hereditary graphs. However the number of permutation (distance-hereditary) graphs obtained by adding a vertex to a permutation (distance-hereditary) graph is generally exponentially large. Thus exhaustive checking of these graphs does not achieve any polynomial time algorithm. Therefore reducing the number of preimage candidates is the key point.

  • Centralized Gradient Pattern for Face Recognition

    Dong-Ju KIM  Sang-Heon LEE  Myoung-Kyu SHON  

     
    PAPER-Face Perception and Recognition

      Vol:
    E96-D No:3
      Page(s):
    538-549

    This paper proposes a novel face recognition approach using a centralized gradient pattern image and image covariance-based facial feature extraction algorithms, i.e. a two-dimensional principal component analysis and an alternative two-dimensional principal component analysis. The centralized gradient pattern image is obtained by AND operation of a modified center-symmetric local binary pattern image and a modified local directional pattern image, and it is then utilized as input image for the facial feature extraction based on image covariance. To verify the proposed face recognition method, the performance evaluation was carried out using various recognition algorithms on the Yale B, the extended Yale B and the CMU-PIE illumination databases. From the experimental results, the proposed method showed the best recognition accuracy compared to different approaches, and we confirmed that the proposed approach is robust to illumination variation.

  • A Fast Implementation of PCA-L1 Using Gram-Schmidt Orthogonalization

    Mariko HIROKAWA  Yoshimitsu KUROKI  

     
    LETTER-Face Perception and Recognition

      Vol:
    E96-D No:3
      Page(s):
    559-561

    PCA-L1 (principal component analysis based on L1-norm maximization) is an approximate solution of L1-PCA (PCA based on the L1-norm), and has robustness against outliers compared with traditional PCA. However, the more dimensions the feature space has, the more calculation time PCA-L1 consumes. This paper focuses on an initialization procedure of PCA-L1 algorithm, and proposes a fast method of PCA-L1 using Gram-Schmidt orthogonalization. Experimental results on face recognition show that the proposed method works faster than conventional PCA-L1 without decrease of recognition accuracy.

  • Linear Time Algorithms for Finding Articulation and Hinge Vertices of Circular Permutation Graphs

    Hirotoshi HONMA  Kodai ABE  Yoko NAKAJIMA  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    419-425

    Let Gs=(Vs, Es) be a simple connected graph. A vertex v ∈ Vs is an articulation vertex if deletion of v and its incident edges from Gs disconnects the graph into at least two connected components. Finding all articulation vertices of a given graph is called the articulation vertex problem. A vertex u ∈ Vs is called a hinge vertex if there exist any two vertices x and y in Gs whose distance increase when u is removed. Finding all hinge vertices of a given graph is called the hinge vertex problem. These problems can be applied to improve the stability and robustness of communication network systems. In this paper, we propose linear time algorithms for the articulation vertex problem and the hinge vertex problem of circular permutation graphs.

  • An Approximate Flow Betweenness Centrality Measure for Complex Network

    Jia-Rui LIU  Shi-Ze GUO  Zhe-Ming LU  Fa-Xin YU  Hui LI  

     
    LETTER-Information Network

      Vol:
    E96-D No:3
      Page(s):
    727-730

    In complex network analysis, there are various measures to characterize the centrality of each node within a graph, which determines the relative importance of each node. The more centrality a node has in a network, the more significance it has in the spread of infection. As one of the important extensions to shortest-path based betweenness centrality, the flow betweenness centrality is defined as the degree to which each node contributes to the sum of maximum flows between all pairs of nodes. One of the drawbacks of the flow betweenness centrality is that its time complexity is somewhat high. This Letter proposes an approximate method to calculate the flow betweenness centrality and provides experimental results as evidence.

  • Development and Applications of SQUIDs in Korea Open Access

    Yong-Ho LEE  Hyukchan KWON  Jin-Mok KIM  Kiwoong KIM  Kwon-Kyu YU  In-Seon KIM  Chan-Seok KANG  Seong-Joo LEE  Seong-Min HWANG  Yong-Ki PARK  

     
    INVITED PAPER

      Vol:
    E96-C No:3
      Page(s):
    307-312

    As sensitive magnetic sensors, magnetometers based on superconducting quantum interference devices can be used for the detection of weak magnetic fields. These signals can be generated by diverse origins, for example, brain electric activity, myocardium electric activity, and nuclear precession of hydrogen protons. In addition, weak current induced in the low-temperature detectors, for example, transition-edge sensors can be detected using SQUIDs. And, change of magnetic flux quantum generated in a superconducting ring can be detected by SQUID, which can be used for realization of mechanical force. Thus, SQUIDs are key elements in precision metrology. In Korea, development of low-temperature SQUIDs based on Nb-Josephson junctions was started in late 1980s, and Nb-based SQUIDs have been used mainly for biomagnetic measurements; magnetocardiography and magnetoencephalography. High-Tc SQUIDs, being developed in mid 1990s, were used for magnetocardiography and nondestructive evaluation. Recently, SQUID-based low-field nuclear magnetic resonance technology is under development. In this paper, we review the past progress and recent activity of SQUID applications in Korea, with focus on biomagnetic measurements.

  • Clinical Application of Neuromagnetic Recordings: From Functional Imaging to Neural Decoding Open Access

    Masayuki HIRATA  Toshiki YOSHIMINE  

     
    INVITED PAPER

      Vol:
    E96-C No:3
      Page(s):
    313-319

    Magnetoencephalography (MEG) measures very weak neuromagnetic signals using SQUID sensors. Standard MEG analyses include averaged waveforms, isofield maps and equivalent current dipoles. Beamforming MEG analyses provide us with frequency-dependent spatiotemporal information about the cerebral oscillatory changes related to not only somatosensory processing but also language processing. Language dominance is able to be evaluated using laterality of power attenuation in the low γ band in the frontal area. Neuromagnetic signals of the unilateral upper movements are able to be decoded using a support vector machine.

  • Effects of Received Power Imbalance on the Diversity Gain of a Digital TV MRC Array Antenna

    Koichi OGAWA  Kazuhiro HONDA  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:3
      Page(s):
    811-819

    This paper presents a basic investigation of the power imbalance problem with regard to maximum ratio combining (MRC) array antennas for digital TV broadcast reception. First, the relationship between the decrease in the diversity gain and reduction in the received power was investigated using two-element and four-element dipole array antennas by means of a Monte Carlo simulation. The relationship between the decrease in the diversity gain and the number of branches imposed to reduce the received power was also investigated. Then, a simple method of predicting the reduction in the diversity gain under imbalanced power conditions is given using the simulation results. The objective is to determine a criterion associated with the gain reduction that allows us to achieve the required system performance. Finally, the proposed method is confirmed by analysis using a model representing a typical portable digital broadcasting TV set held with both hands that simulates the power imbalance condition.

  • An Algorithm for Obtaining the Inverse for a Given Polynomial in Baseband

    Yuelin MA  Yasushi YAMAO  Yoshihiko AKAIWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:3
      Page(s):
    675-683

    Compensation for the nonlinear systems represented by polynomials involves polynomial inverse. In this paper, a new algorithm is proposed that gives the baseband polynomial inverse with a limited order. The algorithm employs orthogonal basis that is predetermined from the distribution of input signal and finds the coefficients of the inverse polynomial to minimize the mean square error. Compared with the well established p-th order inverse method, the proposed method can suppress the distortions better including higher order distortions. It is also extended to obtain memory polynomial inverse through a feedback-configured structure. Both numerical simulations and experimental results demonstrate that the proposed algorithm can provide good performance for compensating the nonlinear systems represented by baseband polynomials.

  • Double-Scale Channel Prediction for Precoded TDD-MIMO Systems

    De-Chun SUN  Zu-Jun LIU  Ke-Chu YI  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E96-A No:3
      Page(s):
    745-746

    In precoded TDD MIMO systems, precoding is done based on the downlink CSI, which can be predicted according to the outdated uplink CSI. This letter proposes a double-scale channel prediction scheme where frame-scale Kalman filters and pilot-symbol-scale AR predictors jointly predict the needed downlink CSI.

  • Exact Power Analysis of Unified Code over Generalized Mersenne Prime Fields

    Toshiyuki MASUE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E96-A No:2
      Page(s):
    618-625

    This paper presents a power analysis that applies to elliptic curves over generalized Mersenne prime field Fp. This prime field enables efficient modular reductions which influence the computational performance of an elliptic curve cryptosystem. The general modular reductions stochastically calculate extra operations. Some studies showed the possibility of power analysis attacks to scalar multiplication with a unified code by using the statistical information of extra operations. In this paper, we present the statistical experiment and possibility of attacks, and propose the more sensitive attack and the countermeasure without performance impact.

  • An Adaptive Fairness and Throughput Control Approach for Resource Scheduling in Multiuser Wireless Networks

    Lin SHAN  Sonia AISSA  Hidekazu MURATA  Susumu YOSHIDA  Liang ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    561-568

    The important issue of an adaptive scheduling scheme is to maximize throughput while providing fair services to all users, especially under strict quality of service requirements. To achieve this goal, we consider the problem of multiuser scheduling under a given fairness constraint. A novel Adaptive Fairness and Throughput Control (AFTC) approach is proposed to maximize the network throughput while attaining a given min-max fairness index. Simulation results reveal that comparing to straightforward methods, the proposed AFTC approach can achieve the desired fairness while maximizing the throughput with short convergence time, and is stable in dynamic scenarios. The trade-off between fairness and throughput can be accurately controlled by adjusting the scheduler's parameters.

  • Semi-Supervised Nonparametric Discriminant Analysis

    Xianglei XING  Sidan DU  Hua JIANG  

     
    LETTER-Pattern Recognition

      Vol:
    E96-D No:2
      Page(s):
    375-378

    We extend the Nonparametric Discriminant Analysis (NDA) algorithm to a semi-supervised dimensionality reduction technique, called Semi-supervised Nonparametric Discriminant Analysis (SNDA). SNDA preserves the inherent advantages of NDA, that is, relaxing the Gaussian assumption required for the traditional LDA-based methods. SNDA takes advantage of both the discriminating power provided by the NDA method and the locality-preserving power provided by the manifold learning. Specifically, the labeled data points are used to maximize the separability between different classes and both the labeled and unlabeled data points are used to build a graph incorporating neighborhood information of the data set. Experiments on synthetic as well as real datasets demonstrate the effectiveness of the proposed approach.

  • A Fully Automatic Player Detection Method Based on One-Class SVM

    Xuefeng BAI  Tiejun ZHANG  Chuanjun WANG  Ahmed A. ABD EL-LATIF  Xiamu NIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:2
      Page(s):
    387-391

    Player detection is an important part in sports video analysis. Over the past few years, several learning based detection methods using various supervised two-class techniques have been presented. Although satisfactory results can be obtained, a lot of manual labor is needed to construct the training set. To overcome this drawback, this letter proposes a player detection method based on one-class SVM (OCSVM) using automatically generated training data. The proposed method is evaluated using several video clips captured from World Cup 2010, and experimental results show that our approach achieves a high detection rate while keeping the training set construction's cost low.

6081-6100hit(20498hit)