The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

15241-15260hit(20498hit)

  • An Analysis for the Whispering Gallery Modes on a Millimeter Wave Dielectric Disk Resonator by a Point Matching Method

    Yoshiro TOMABECHI  Yoshinori KOGAMI  Mari MATSUBARA  Kazuhito MATSUMURA  

     
    PAPER

      Vol:
    E84-C No:10
      Page(s):
    1554-1560

    Using a point matching method, we have numerically analyzed resonance frequencies and unloaded Q factor of whispering gallery modes in a millimeter wave region that are well known as an intrinsic mode of a dielectric disk resonator. We express field distributions of the resonance modes by a summation of spherical waves. Tangential electromagnetic fields inside the disk are matched to those outside the disk at appropriate matching points on a boundary. As the result, a 4N 4N (N; number of matching points) determinant is derived as an eigenvalue equation of the disk resonator. Since elements of the determinant are complex numbers, a complex angular frequency is introduced to make a value of the determinant zero. For a location of the matching points, we also introduce a new technique which is derived from a field expression of the whispering gallery modes. Since an azimuthal angle dependence of the field distributions with a resonance mode number m is presented by the associated Legendre function Pnm(cos θ), we define abscissas θi of the matching points as solutions of Pm+2N-1m (cos θ) = 0. Considering the field symmetry, we also modify the eigenvalue equation to a new eigenvalue equation which is expressed (4N - 2) (4N - 2) determinant. From the results of our numerical analysis, we can find that the resonance frequencies and unloaded Q factor well converge for number of matching points N. A comparison of numerical results and experimental ones, in a millimeter wave band (50 - 100 GHz), shows a good agreement with each other. It is found that our analysis is effective for practical use in the same wave band.

  • Analysis and Design of Integrated Structures of (H)NRD Guide and E-Plane Waveguide Based on Transverse Resonance Technique

    Mitsuyoshi KISHIHARA  Isao OHTA  Kuniyoshi YAMANE  

     
    PAPER

      Vol:
    E84-C No:10
      Page(s):
    1561-1568

    The present paper treats the analysis and design method of the (H)NRD guide and E-plane rectangular waveguide integrated structures on the basis of the transverse resonance technique. The analysis is made by assuming a resonant cavity short-circuited at appropriate reference planes and considering the cavity as a waveguide discontinuity problem in the transverse direction. The resonant lengths are determined from the transverse equivalent circuit, and the scattering parameters are calculated from the lengths. We analyze (H)NRD discontinuities and design two types of HNRD guide to E-plane waveguide transitions and a directional coupler composed of HNRD and E-plane waveguide. The theoretical results are in good agreement with results calculated by an EM-simulator.

  • Near-Optimality of Subcodes of Hamming Codes on the Two-State Markovian Additive Channel

    Mitsuru HAMADA  

     
    PAPER-Coding Theory

      Vol:
    E84-A No:10
      Page(s):
    2383-2388

    Near-optimality of subcodes of the cyclic Hamming codes is demonstrated on the binary additive channel whose noise process is the two-state homogeneous Markov chain, which is a model of bursty communication channels.

  • Scattering of Electromagnetic Wave by Large Open-Ended Cavities with Surface Impedance Boundary Conditions

    Masato TADOKORO  Kohei HONGO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E84-C No:10
      Page(s):
    1583-1587

    The boundary integral equation (BIE) on interior walls with surface impedance conditions is implemented to the iterative physical optics method and how to treat the singularities involved in the BIE of an impedance cavity is described. Singular integrals over a rectangular region can be represented by simple elementary functions.

  • A High Assurance On-Line Recovery Technology for a Space On-Board Computer

    Hiroyuki YASHIRO  Teruo FUJIWARA  Kinji MORI  

     
    PAPER-Issues

      Vol:
    E84-D No:10
      Page(s):
    1350-1359

    A high assurance on-line recovery technology for a space on-board computer that can be realized using commercial devices is proposed whereby a faulty processor node confirms its normality and then recovers without affecting the other processor nodes in operation. Also, the result of an evaluation test using the breadboard model implementing this technology is reported. Because this technology enables simple and assured recovery of a faulty processor node regardless of its degree of redundancy, it can be applied to various applications, such as a launch vehicle, a satellite, and a reusable launch vehicle. As a result, decreasing the cost of an on-board computer is possible while maintaining its high reliability.

  • A Switched-Voltage Delay Cell with Differential Inputs and Its Applications

    Xiaojing SHI  Hiroki MATSUMOTO  Kenji MURAO  

     
    PAPER-Electronic Circuits

      Vol:
    E84-C No:9
      Page(s):
    1227-1233

    This paper introduces a switched-voltage delay cell with differential inputs. It can be used as a building block for a range of analogue functions such as voltage-to-frenquency converter, A/D converter, etc. Applications incorporating the delay cell are presented. The performances are verified by simulations on PSpice.

  • A Three-Port 180-Degree Antenna Hybrid: Design and Applications

    Young-Huang CHOU  Shyh-Jong CHUNG  

     
    PAPER-Reflector Antennas and Power Dividers

      Vol:
    E84-B No:9
      Page(s):
    2443-2450

    In this paper, a novel three-port antenna structure, named 180 antenna hybrid, is proposed and demonstrated. This structure is composed of a Wilkinson power divider with the isolation resistor replaced by an aperture-coupled patch antenna. The equivalent series impedance of the antenna can be adjusted to the required one by properly choosing the dimensions of the patch and the coupling aperture. When a signal is fed to the balanced port of this antenna hybrid, the power is equally split, with equal phases, to the two unbalanced ports. No power is radiated out from the antenna. In the other hand, a signal received from the antenna will be split with equal power but 180 phase difference to the two unbalanced ports. The balanced port is an isolation port. The measurement results showed good agreement with the characteristics to be designed. Three applications of this 180 antenna hybrid are introduced, that is, a balanced mixer, an active transmitting antenna, and a dual-radiation-mode antenna array. The balanced mixer was constructed with diodes directly mounted on the two unbalanced ports of the antenna hybrid. The LO signal is fed from the balanced port and RF signal is received from the antenna. The active transmitting antenna was implemented with feedback configuration. The route from one of the unbalanced port to the balanced port of the antenna hybrid was used as the feedback path. A locking signal may be injected from the other unbalanced port. Finally, through a three-quarter-wavelength microstrip line, the balanced port of the antenna hybrid was connected to another aperture-coupled patch antenna to form a dual-radiation-mode antenna array. The in-phase and out-of-phase radiation patterns of this two-element array can be obtained from two unbalanced ports of the antenna hybrid, respectively.

  • European Smart Antenna Test-Bed--Field Trial Results--

    Mark BEACH  Chris SIMMONDS  Paul HOWARD  Peter DARWOOD  

     
    INVITED PAPER

      Vol:
    E84-B No:9
      Page(s):
    2348-2356

    The European Commission, through RACE, ACTS and now the IST programmes, has funded numerous consortium based research projects addressing capacity enhancement by means of Smart or Adaptive Antenna Technology. In addition to capacity enhancement, these projects have also considered the additional operational benefits, such as multipath mitigation and range extension, that this technology can offer to wireless network deployments. This paper provides an overview of the results obtained from the test-bed and field trial evaluations conducted under the ACTS TSUNAMI project. Here, a test-bed facility was developed by the project partners in order to appraise the potential merits of a Smart antenna facet deployment at the base-station cell site of a DCS1800 network. Details of the test-bed hardware and adaptive control algorithms are given, as well as results from the user tracking, traffic bearer quality assessments and range extension experiments. These results help substantiate many of the claims put forward by the proponents of Smart antenna technology, as well as ranking the relative performance of the family of adaptive control algorithms evaluated here. Further, new research activities, which embody Smart Antenna Technology, now supported under IST funding are also introduced.

  • Fourier Optical Processing Beamforming Network Using Optical Waveguide Arrays and Lens for Transmission and Reception

    Tomohiro AKIYAMA  Keizo INAGAKI  Yoshihiko MIZUGUCHI  Takashi OHIRA  

     
    PAPER-Millimeter-Wave Antennas

      Vol:
    E84-B No:9
      Page(s):
    2413-2420

    An optically controlled beamforming technique is a very effect procedure for phased array antenna control. We have built a Fourier optical processing beamforming network. In the optical processor, we use optical waveguide arrays and a GRIN micro lens in order to reduce the size and weight of the processor, optical coupling losses, mechanical destabilization, and optical alignment difficulties. This paper describes the characteristics of a one-dimensional Fourier optical processor, and shows the configurations of both its transmitting and receiving modes, which we have constructed. We demonstrate multiple signal generation, and beam steering for transmission in the X-band. Furthermore, we configure the beamformer for reception using the phase information of local signals form the optical processor. We additionally demonstrate the beam steering of the received X-band RF signal. Experimental results confirm the feasibility of the Fourier optical processing beamforming network.

  • A Folded Loop Antenna System for Handsets Developed and Based on the Advanced Design Concept

    Yongho KIM  Hisashi MORISHITA  Yoshio KOYANAGI  Kyohei FUJIMOTO  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2468-2475

    Analysis of a novel folded loop antenna for handset is described along with the advanced design concept for handset antennas. The design concept shown in this paper meets the foremost requirement for handset antennas such as (1) small size and yet (2) has capability of mitigating degradation of antenna performance due to the body effect, and (3) of reducing SAR value in the human head at the handset talk position, in addition to the indispensable requirements for handset antennas such as (4) low profile, and (5) light weight. The technology applied is to make this antenna (a) an integrated structure, which is a typical application of the fundamental concept of making antennas small and (b) a balanced structure which has been proved to be very effective to satisfy the requirements (2) and (3). The antenna is essentially a two-wire transmission line, folded at about a quarter-wavelength to form a half-wave folded dipole, and yet appears to be a loop of one-wavelength. It does not have really a balanced structure, as is fed with an unbalanced line; however, the antenna structure itself can eliminate the unbalanced current flow on the feed line as in the balanced antenna system. Both theoretical and experimental analyses have been shown and the usefulness of the antenna is discussed. This paper may suggest the advanced technology and design concept that will be applied to the development of handset antennas toward the future.

  • Bidirectional Rod Antennas Comprising a Narrow Patch and Parasitic Elements

    Keizo CHO  Toshikazu HORI  Kenichi KAGOSHIMA  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2482-2489

    This paper proposes a novel bi-directional rod antenna comprising a narrow patch and parasitic elements for base station antennas of street microcell systems. It is shown that the parasitic elements improve the antenna efficiency of an ordinary bi-directional printed antenna and make it possible to form the antennas using conventional substrates. This paper also proposes a suitable configuration for the array and investigates radiation characteristics of the configuration. Finally, a prototype of the bi-directional rod antenna is presented and the effectiveness of the bi-directional antenna is evaluated.

  • The Efficiency-Fractional Bandwidth Product (EB) of Small Dielectric Loaded Antennas and the System EB

    Ichirou IDA  Takatoshi SEKIZAWA  Hiroyuki YOSHIMURA  Koichi ITO  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2498-2506

    The efficiency-fractional bandwidth product (EB), which is expressed as a ratio of the radiation resistance to the absolute value of the input reactance of an antenna, is used as a performance criterion for small dielectric loaded monopole antennas (DLMAs). The dependence of the EB on the permittivity of the dielectric loading (i.e., the electrical volume) is experimentally and numerically investigated for the first time in antenna research. As a result, it is found that the EBs of the some DLMAs are enhanced over a bare monopole antenna and an EB characteristic curve has a maximum point. This result suggests the presence of the optimum electrical volume for the dielectric loading in order to obtain the best EB performance. A general reason for the existence of the peak value is also explained using a mathematical deduction. Finally the system EB, which is an efficiency-fractional bandwidth product of the DLMA with a practical matching circuit, is defined and its dependence on the relative permittivity is illustrated. Consequently, the existence of the peak value is also confirmed for the system EBs. In addition, it is demonstrated that the enhancement of the system EB is mainly due to the enhancement in the efficiency of the antenna system.

  • Numerical Study of the Small Multi-Panel Reconfigurable Reflector Antenna's Performance

    Suphachet PHERMPHOONWATANASUK  Chatchai WAIYAPATTANAKORN  

     
    PAPER-Reflector Antennas and Power Dividers

      Vol:
    E84-B No:9
      Page(s):
    2421-2435

    Beam reconfiguration by structural reconfigurable antenna, such as the small multi-panel reconfigurable reflector antenna, has an aspect of great concern, that is the effects due to the use of a number of small panels to form the reflecting surface. It is thus a matter of great interest to numerically investigate all possible factors affecting the performance of this type of antenna such as: neighboring panels blocking, diffraction. The "null-field hypothesis" and PTD are employed to account for the effects of both phenomena on the main beam steering ability and the cross-polar level. In addition, the transformation of the polygonal flat domains into the square domains is applied in calculating the PO radiation field due to the various irregular polygonal flat sections of the arbitrary initial approximate reflector e.g., the flat circular reflector and the paraboloidal reflector. It is found that the main contribution to the total cross polarization is depolarization due to the finite size of the panels. The maximum cross-polar gain predicted using PTD is around -30 dB. The blocking effect has minor influence on cross-polarization. Both effects cause distortion on the co-polar pattern for the observer far from boresight but blocking has more influence than edge diffraction. Both effects have minor influence on the co-polar gain. The co-polar gain has variation of less than or equal to 0.07 dB in the flat case and 0.16 dB in the paraboloid case.

  • Approximation of Multi-Dimensional Chaotic Dynamics by Using Multi-Stage Fuzzy Inference Systems and the GA

    Yoshinori KISHIKAWA  Shozo TOKINAGA  

     
    PAPER-Chaos & Dynamics

      Vol:
    E84-A No:9
      Page(s):
    2128-2137

    This paper deals with the approximation of multi-dimensional chaotic dynamics by using the multi-stage fuzzy inference system. The number of rules included in multi-stage fuzzy inference systems is remarkably smaller compared to conventional fuzzy inference systems where the number of rules are proportional to an exponential of the number of input variables. We also propose a method to optimize the shape of membership function and the appropriate selection of input variables based upon the genetic algorithm (GA). The method is applied to the approximation of typical multi-dimensional chaotic dynamics. By dividing the inference system into multiple stages, the total number of rules is sufficiently depressed compared to the single stage system. In each stage of inference only a portion of input variables are used as the input, and output of the stage is treated as an input to the next stage. To give better performance, the shape of the membership function of the inference rules is optimized by using the GA. Each individual corresponds to an inference system, and its fitness is defined by using the prediction error. Experimental results lead us to a relevant selection of the number of input variables and the number of stages by considering the computational cost and the requirement. Besides the GA in the optimization of membership function, we use the GA to determine the input variables and the number of input. The selection of input variable to each stage, and the number of stages are also discussed. The simulation study for multi-dimensional chaotic dynamics shows that the inference system gives better prediction compared to the prediction by the neural network.

  • Box Puzzling Problem Solver by Hysteresis Neural Networks

    Toshiya NAKAGUCHI  Shinya ISOME  Kenya JIN'NO  Mamoru TANAKA  

     
    PAPER-Application of Neural Network

      Vol:
    E84-A No:9
      Page(s):
    2173-2181

    We propose hysteresis neural network solving combinatorial optimization problems, Box Puzzling Problem. Hysteresis neural network searches solutions of the problem with nonlinear dynamics. The output vector becomes stable only when it corresponds with a solution. This system does never become stable without satisfying constraints of the problem. After estimating hardware calculating time, we obtain that numerical calculating time increases extremely comparing with hardware time as problem's scale increases. However the system has possibility of limit cycle. Though it is very hard to remove limit cycle completely, we propose some methods to remove this phenomenon.

  • Cylindrical Multi-Sector Antenna with Self-Selecting Switching Circuit

    Tomohiro SEKI  Toshikazu HORI  

     
    PAPER-Millimeter-Wave Antennas

      Vol:
    E84-B No:9
      Page(s):
    2407-2412

    Sector antennas provide many advantages such as when combined with a narrow beam antenna, they become particularly effective in achieving high-speed wireless communication systems and they aid in simplifying the structure. These antennas have a drawback in that as the number of sectors increases, the antenna size rapidly increases. Therefore, downsizing the sector antenna has become a major research topic. A promising candidate is utilizing a phased-array type antenna; however, this antenna requires a phase-shifter circuit for beam scanning and generally the feeding circuit for this type of antenna is very complicated. To address these issues, we propose a self-selecting feeding circuit that is controlled by the same control circuit and is operated similarly to the conventional single port n-th throw (SPNT) switch. We fabricated a small cylindrical 12-sector antenna at 19 GHz employing the proposed feeding circuit for verification purposes. Furthermore, this paper clarifies the design method of this feeding circuit where the antenna diameter is 71 mm, and the results clearly show that the gain is more than 12 dBi.

  • High Quality Speech Synthesis Based on the Reproduction of the Randomness in Speech Signals

    Naofumi AOKI  

     
    PAPER-Image & Signal Processing

      Vol:
    E84-A No:9
      Page(s):
    2198-2206

    A high quality speech synthesis technique based on the wavelet subband analysis of speech signals was newly devised for enhancing the naturalness of synthesized voiced consonant speech. The technique reproduces a speech characteristic of voiced consonant speech that shows unvoiced feature remarkably in the high frequency subbands. For mixing appropriately the unvoiced feature into voiced speech, a noise inclusion procedure that employed the discrete wavelet transform was proposed. This paper also describes a developed speech synthesizer that employs several random fractal techniques. These techniques were employed for enhancing especially the naturalness of synthesized purely voiced speech. Three types of fluctuations, (1) pitch period fluctuation, (2) amplitude fluctuation, and (3) waveform fluctuation were treated in the speech synthesizer. In addition, instead of a normal impulse train, a triangular pulse was used as a simple model for the glottal excitation pulse. For the compensation for the degraded frequency characteristic of the triangular pulse that overdecreases than the spectral -6 dB/oct characteristic required for the glottal excitation pulse, the random fractal interpolation technique was applied. In order to evaluate the developed speech synthesis system, psychoacoustic experiments were carried out. The experiments especially focused on how the mixed excitation scheme effectively contributed to enhancing the naturalness of voiced consonant speech. In spite that the proposed techniques were just a little modification for enhancing the conventional LPC (linear predictive coding) speech synthesizer, the subjective evaluation suggested that the system could effectively gain the naturalness of the synthesized speech that tended to degrade in the conventional LPC speech synthesis scheme.

  • A Mathematical Theory for Available Operation of Network Systems Extraordinarily Complicated and Diversified on Large-Scales

    Kazuo HORIUCHI  

     
    INVITED PAPER

      Vol:
    E84-A No:9
      Page(s):
    2078-2083

    In this paper, we shall construct mathematical theory based on the concept of set-valued mappings, suitable for available operation of network systems extraordinarily complicated and diversified on large scales. Fundamental conditions for availability of system behaviors of such network systems are clarified in a form of fixed point theorem for system of set-valued mappings.

  • Tensor-Based Theory for Quantized Piecewise-Affine Markov Systems: Analysis of Some Map Families

    Gianluca SETTI  Riccardo ROVATTI  Gianluca MAZZINI  

     
    PAPER-Chaos & Dynamics

      Vol:
    E84-A No:9
      Page(s):
    2090-2100

    In this paper we consider a tensor-based approach to the analytical computation of higher-order expectations of quantized trajectories generated by Piecewise Affine Markov (PWAM) maps. We formally derive closed-form expressions for expectations of trajectories generated by three families of maps, referred to as (n,t)-tailed shifts, (n,t)-broken identities and (n,t,π)-mixing permutations. These families produce expectations with asymptotic exponential decay whose detailed profile is controlled by map design. In the (n,t)-tailed shift case expectations are alternating in sign, in the (n,t)-broken identity case they are constant in sign, and the (n,t,π)-mixing permutation case they follow a dumped periodic trend.

  • Line Integral Representation for Diffracted Fields in Physical Optics Approximation Based on Field Equivalence Principle and Maggi-Rubinowicz Transformation

    Ken-ichi SAKINA  Makoto ANDO  

     
    PAPER-EM Theory

      Vol:
    E84-B No:9
      Page(s):
    2589-2596

    This paper first gives the exact surface integral representation for PO diffracted electromagnetic fields from bounded flat plate through the deformations of the original surface by using field equivalence principle. This exact representation with the surface integral can be approximately reduced to novel line integral along the boundary of the plate by the use of Maggi-Rubinowicz transformation, which keeps a high accuracy even in near zone. Numerical results for the scattering of the electric dipole wave from the square planar plate are presented for demonstrating the accuracy.

15241-15260hit(20498hit)