The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

15081-15100hit(20498hit)

  • Polarimetric SAR Interferometry for Forest Analysis Based on the ESPRIT Algorithm

    Hiroyoshi YAMADA  Yoshio YAMAGUCHI  Yunjin KIM  Ernesto RODRIGUEZ  Wolfgang-Martin BOERNER  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1917-1924

    Synthetic aperture radar interferometry have been established in the past two decades, and used extensively for many applications including topographic mapping of terrain and surface deformation. Vegetation analysis is also a growing area of its application. In this paper, we propose an polarimetric SAR interferometry technique for interferometric phase extraction of each local scatterer. The estimated position of local scattering centers has an important information for effective tree height estimation of forest. The proposed method formulated for local scattering center extraction is based on the ESPRIT algorithm which is known for high-resolution capability of closely located incident waves. The method shows high-resolution performance when local scattered waves are uncorrelated and have different polarization characteristics. Using the method, the number of dominant local scattering centers and interferometric phases in each image pixel can be estimated directly. Validity of the algorithm is demonstrated by using examples derived from SIR-C data.

  • Biologically-Inspired Autonomous Adaptability in a Communication Endsystem: An Approach Using an Artificial Immune Network

    Junichi SUZUKI  Yoshikazu YAMAMOTO  

     
    PAPER-Databases

      Vol:
    E84-D No:12
      Page(s):
    1782-1789

    This paper describes the adaptability of communication software through a biologically-inspired policy coordination. Many research efforts have developed adaptable systems that allow various users or applications to meet their specific requirements by configuring different design and optimization policies. Navigating through many policies manually, however, is tedious and error-prone. Developers face the significant manual and ad-hoc work of engineering an system. In contrast, we propose to provide autonomous adaptability in communication endsystem with OpenWebServer/iNexus, which is both a web server and an object-oriented framework to tailer various web services and applications. The OpenWebServer's modular architecture allows to abstract and maintain a wide range of aspects in a HTTP server, and reconfigure the system by adding, deleting, changing, or replacing their policies. iNexus is a tool for automated policy-based management of OpenWebServer. Its design is inspired by the natural immune system, particularly immune network, a truly autonomous decentralized system. iNexus inspects the current system condition of OpenWebServer periodically, measures the delivered quality of service, and selects suitable set of policies to reconfigure the system dynamically by relaxing constraints between them. The policy coordination process is performed through decentralized interactions among policies without a single point of control, as the natural immune system does. This paper discusses communication software can evolve continuously in the piecemeal way with biological concepts and mechanisms, adapting itself to ever-changing environment.

  • A New Approach to Deterministic Execution Testing for Concurrent Programs

    In Sang CHUNG  Byeong Man KIM  

     
    PAPER-Software Engineering

      Vol:
    E84-D No:12
      Page(s):
    1756-1766

    Deterministic execution testing has been considered a promising way for concurrent program testing because of its ability to replay a program's execution. Since, however, deterministic execution requires that a synchronization event sequence to be replayed be feasible and valid, it is not directly applicable to a situation in which synchronization sequences, being valid but infeasible, are taken into account. Resolving this problem is very important because a program may still meet its specification although the feasibility of all valid sequences is not satisfied. In this paper, we present a new approach to deterministic execution for testing concurrent systems. The proposed approach makes use of the notion of event independence and constructs an automation which accepts all the sequences semantically equivalent to a given event sequence to be replayed. Consequently, we can allow a program to be executed according to event sequences other than the given (possible infeasible) sequence if they can be accepted by the automation.

  • A Single-Pass Antialiased Rasterization Processor

    Jin-Aeon LEE  Lee-Sup KIM  

     
    PAPER-Computer Graphics

      Vol:
    E84-A No:12
      Page(s):
    3152-3161

    Antialiased is one of challenging problems to be solved for the high fidelity image synthesis in 3D graphics. In this paper a rasterization processor which is capable of single-pass full-screen antialiasing is presented. To implement a H/W accelerated single-pass antialiased rasterization processor at the reasonable H/W cost and minimized processing performance degradation, our work is mainly focused on the efficient H/W implementation of a modified version of the A-buffer algorithm. For the efficient handling of partial-pixel fragments of the rasterization phase, a new partial-pixel-merging scheme and a simple and efficient new dynamic memory management scheme are proposed. For the final blending of partial-pixels without loss of generality, a parallel subpixel blender is introduced. To study the feasibility of the proposed rasterization processor as a practical rasterization processor, a prototype processor has been designed using a 0.35 µm EML technology. It operates 100 MHz @3.3 V and has the rendering performance from 25M to 80M pixel-fragments/sec depending on the scene complexity.

  • Real-Time Camera Parameter Estimation for 3-D Annotation on a Wearable Vision System

    Takashi OKUMA  Takeshi KURATA  Katsuhiko SAKAUE  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1668-1675

    In this paper, we describe a method for estimating external camera parameters in real time. We investigated the effectiveness of this method for annotating real scenes with 3-D virtual objects on a wearable computer. The proposed method enables determining known natural feature points of objects through multiplied color histogram matching and template matching. This external-camera-parameter calculation method consists of three algorithms for PnP problems, and it uses each algorithm selectively. We implemented an experimental system based on our method on a wearable vision system. This experimental system can annotate real objects with 3D virtual objects by using the proposed method. The system was implemented in order to enable effective annotation in a mixed-reality environment on a wearable computing system. The system consists of an ultra small CCD camera set at the user's eye, an ultra small display, and a computer. This computer uses the proposed method to determine the camera parameters. It then renders virtual objects based on the camera parameters and synthesizes images on a display. The system works at 10 frames per second.

  • Parallel Implementation of a Kalman-Based Sinusoidal Estimator

    Kiyoshi NISHIYAMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:12
      Page(s):
    3174-3176

    Phase-based methods for estimating the frequency of a sinusoid have typically suffered from a threshold effect, where for signal to noise ratio (SNR) below the threshold, the mean squared error of the estimate rapidly increases. Furthermore, it is a significant problem that the threshold is considerably high and strongly depends on frequency. To overcome the difficulties, a Kalman-based sinusoidal estimator bank (KSEB) is proposed. In the derivation of the KSEB, a four-channel filter bank and decimation technique are effectively used. The computer simulation also demonstrates the superiority of the KSEB to the other frequency estimators.

  • A New Methodology for Optimal Placement of Decoupling Capacitors on Printed Circuit Board

    Atsushi KAMO  Takayuki WATANABE  Hideki ASAI  

     
    LETTER-Circuit Theory

      Vol:
    E84-A No:12
      Page(s):
    3177-3181

    This report describes a new methodology for the optimal placement of decoupling capacitors on the printed circuit board (PCB). This method searches the optimal position of decoupling capacitor so that the impedance characteristics at the power supply is minimized in the specified frequency range. In this method, the PCB is modeled by the PEEC method to handle the 3-dimensional structures and Krylov-subspace technique is applied to obtain efficiently the impedance characteristics in the frequency domain.

  • An Efficient Slot Allocation Algorithm to Accommodate Multimedia Traffic in CDMA/TDD-Based Wireless Communications Systems

    Hiroyuki YOMO  Atsushi NAKATA  Shinsuke HARA  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3068-3076

    Recently, code division multiple access scheme with time division duplex (CDMA/TDD) has drawn considerable attention as means to realize efficient wireless multimedia communications system. In this paper, we propose two time slot allocation algorithms for CDMA/TDD systems to efficiently accommodate multimedia traffic. Assuming a practical multiple cell environment and a multimedia service model which consists of several kinds of circuit-switched and packet-switched services with different quality of services (QoSs), we evaluate the average delay (average time from call generation to channel assignment) of the CDMA/TDD system with the proposed algorithms, and compare the performance with that of CDMA with frequency division duplex (CDMA/FDD) and time division multiple access with TDD (TDMA/TDD) systems. Our computer simulation results show that the CDMA/TDD system with one of the proposed algorithms, which can effectively avoid interference among users with different QoSs, can improve the average delay performance as compared with the other systems.

  • Frequency Domain Active Noise Control System without a Secondary Path Model via Perturbation Method

    Yoshinobu KAJIKAWA  Yasuo NOMURA  

     
    PAPER-Digital Signal Processing

      Vol:
    E84-A No:12
      Page(s):
    3090-3098

    In this paper, we propose a frequency domain active noise control (ANC) system without a secondary path model. The proposed system is based on the frequency domain simultaneous perturbation (FDSP) method we have proposed. In this system, the coefficients of the adaptive filter are updated only by error signals. The conventional ANC system using the filtered-x algorithm becomes unstable due to the error between the secondary path, from secondary source to error sensor, and its model. In contrast, the proposed ANC system has the advantage not to use the model. In this paper, we show the principle of the proposed ANC system, and examine its efficiency through computer simulations.

  • Nonexistence of Symmetric Modes of Subharmonic Oscillations in Three-Phase Circuit--An Approach by Interval Computation

    Takashi HISAKADO  Kohshi OKUMURA  

     
    PAPER-Circuit Theory

      Vol:
    E84-A No:12
      Page(s):
    3108-3115

    This paper describes how the symmetry of a three-phase circuit prevents the symmetric modes of several subharmonic oscillations. First, we make mathematically it clear that the generation of symmetrical 1/3l-subharmonic oscillations (l=1,2,) are impossible in the three-phase circuit. As far as 1/(3l+1)-subharmonic oscillations (l=1,2,) and 1/(3l+2)-subharmonic oscillations (l=0,1,) are concerned, the former in negative-phase sequence and the latter in positive-phase sequence are shown to be impossible. Further, in order to confirm the above results, we apply the method of interval analysis to the circuit equations and obtain all steady state solutions with unsymmetric modes.

  • Parallel Variable Length Decoding with Inverse Quantization for Software MPEG-2 Decoders

    Daiji ISHII  Masao IKEKAWA  Ichiro KURODA  

     
    PAPER-Image

      Vol:
    E84-A No:12
      Page(s):
    3146-3151

    This paper introduces fast methods for variable length decoding (VLD) and inverse quantization (IQ) on software MPEG-2 decoders by using Single Instruction stream Multiple Data stream (SIMD) type instructions for multimedia applications. With the VLD implementation, the VLD tables are made as small as possible so as to minimize missed cache accesses, and variable length codewords are decoded concurrently. With the IQ implementation, inverse quantization of the VLD results is performed in parallel. When these methods are used, combined clock cycles for VLD and IQ are roughly 30% shorter than those resulting from conventional methods, and this effect is especially pronounced for high bitrate streams.

  • Reconstruction of Architectural Scenes from Uncalibrated Photos and Maps

    Ignazio INFANTINO  Roberto CIPOLLA  Antonio CHELLA  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1620-1625

    We consider the problem of reconstructing architectural scenes from multiple photographs taken from arbitrary viewpoints. The original contribution is the use of a map as a source of geometric constraints to obtain in a fast and simple way a detailed model of a scene. We suppose that images are uncalibrated and have at least one planar structure as a faade for exploiting the planar homography induced between world plane and image to calculate a first estimation of the projection matrix. Estimations are improved by using correspondences between images and map. We show how these simple constraints can be used to calibrate the cameras and recover the projection matrices for each viewpoint. Finally, triangulation is used to recover 3D models of the scene and to visualise new viewpoints. Our approach needs minimal a priori information about the camera being used. A working system has been designed and implemented to allow the user to interactively build a model from uncalibrated images from arbitrary viewpoints and a simple map.

  • JavaTM Call Control (JCC) and Session Initiation Protocol (SIP)

    Ravi JAIN  John-Luc BAKKER  Farooq ANJUM  

     
    INVITED PAPER

      Vol:
    E84-B No:12
      Page(s):
    3096-3103

    This paper describes the JAINTM JavaTM Call Control (JCC) Application Programming Interface (API), and its relationship to network protocols, in particular the Session Initiation Protocol (SIP). JCC is a high-level object-oriented open, standard API for Next Generation Network (NGN) softswitches that enables rapid creation, by third parties, of services that can run independently of the underlying network technology (e.g. wireless, wired, packet, IP, PSTN) and protocols. SIP is a protocol that has been proposed for a wide variety of uses in IP networks, including call control. We argue that instead of being competitors, JCC and SIP are complementary, with JCC offering higher-layer programming abstractions and protocol-independence, and demonstrate by examples how to map JCC version 1.0 to a SIP environment. We thus show that for common call control applications using JCC is simpler, faster and less maintenance intensive than using SIP directly.

  • A Linear Metric Reconstruction by Complex Eigen-Decomposition

    Yongduek SEO  Ki-Sang HONG  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1626-1632

    This paper proposes a linear algorithm for metric reconstruction from projective reconstruction. Metric reconstruction problem is equivalent to estimating the projective transformation matrix that converts projective reconstruction to Euclidean reconstruction. We build a quadratic form from dual absolute conic projection equation with respect to the elements of the transformation matrix. The matrix of quadratic form of rank 2 is then eigen-decomposed to produce a linear estimate. The algorithm is applied to three different sets of real data and the results show a feasibility of the algorithm. Additionally, our comparison of results of the linear algorithm to results of bundle adjustment, applied to sets of synthetic image data having Gaussian image noise, shows reasonable error ranges.

  • Optimum Weight Generation Method for Adaptive Antenna Array Transmit Diversity in W-CDMA Forward Link

    Shinya TANAKA  Taisuke IHARA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3035-3044

    This paper investigates the optimum transmit-antenna-weight generation method for adaptive antenna array transmit diversity (AAA-TD) in the W-CDMA forward link: AAA-TD with beam and null steering (BNST), AAA-TD with beam steering (BST), or switched beam transmit diversity with fixed weights (SBTD-FW). The achievable BER performance after carrier frequency calibration in the transmit beam pattern is compared among the three methods assuming a different carrier frequency in a 2-GHz band with the carrier separation of 184.5 MHz based on computer simulations. The simulation results show that the achievable BER performance in the forward link using AAA-TD with BNST is almost identical to that using AAA-TD with BST when there are many more interfering users than there are array antennas, except for the special case when a small number of higher rate users exists in the reverse link. This is because by performing carrier frequency calibration, the directions of the beam nulls are shifted from the real directions of arrival (DOAs) of the interfering users. However, we also show that the required transmit Eb/N0 at the average BER of 10-3 using AAA-TD with BST is decreased by approximately 1.0 to 1.2 dB compared to that using SBTD-FW with 12 beams.

  • Synthesis for Multiple Input Wire Replacement of a Gate: Theorems and Applications

    Shih-Chieh CHANG  Zhong-Zhen WU  Sheng-Hong TU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E84-A No:12
      Page(s):
    3116-3124

    The single wire replacement attempts to replace a target wire by another wire without changing the circuit functionality. Due to the large searching space required, there is very little success in directly extending the single wire replacement technique to replace multiple wires at the same time. The objective in this paper is to propose a new logic transformation, called the alternative node (Alnode) technique, which attempts to replace multiple wires at a time. Basically, the transformation simultaneously replaces multiple input wires of a gate by a new set of input wires. To accomplish the transformation, we propose several speedup theorems for replacing multiple wires. In this paper, we also demonstrate that the Alnode technique can be applied to achieve power reduction for domino logic and wire length minimization in layouts. The experimental results are encouraging.

  • Robust Method for Recovering Sign of Gaussian Curvature from Multiple Shading Images

    Shinji FUKUI  Yuji IWAHORI  Robert J. WOODHAM  Kenji FUNAHASHI  Akira IWATA  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1633-1641

    This paper proposes a new method to recover the sign of local Gaussian curvature from multiple (more than three) shading images. The information required to recover the sign of Gaussian curvature is obtained by applying Principal Components Analysis (PCA) to the normalized irradiance measurements. The sign of the Gaussian curvature is recovered based on the relative orientation of measurements obtained on a local five point test pattern to those in the 2-D subspace called the eigen plane. Using multiple shading images gives a more accurate and robust result and minimizes the effect of shadows by allowing a larger area of the visible surface to be analyzed compared to methods using only three shading images. Furthermore, it allows the method to be applied to specular surfaces. Since PCA removes linear correlation among images, the method can produce results of high quality even when the light source directions are not widely dispersed.

  • A Hierarchical Classifier for Multispectral Satellite Imagery

    Abdesselam BOUZERDOUM  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1952-1958

    In this article, a hierarchical classifier is proposed for classification of ground-cover types of a satellite image of Kangaroo Island, South Australia. The image contains seven ground-cover types, which are categorized into three groups using principal component analysis. The first group contains clouds only, the second consists of sea and cloud shadow over land, and the third contains land and three types of forest. The sea and shadow over land classes are classified with 99% accuracy using a network of threshold logic units. The land and forest classes are classified by multilayer perceptrons (MLPs) using texture features and intensity values. The average performance achieved by six trained MLPs is 91%. In order to improve the classification accuracy even further, the outputs of the six MLPs were combined using several committee machines. All committee machines achieved significant improvement in performance over the multilayer perceptron classifiers, with the best machine achieving over 92% correct classification.

  • Radar Polarimetry and Polarimetric Interferometry

    Shane CLOUDE  Konstantinos P. PAPATHANASSIOU  Eric POTTIER  

     
    INVITED PAPER

      Vol:
    E84-C No:12
      Page(s):
    1814-1822

    This paper gives an overview of recent progress in radar polarimetry and radar polarimetric interferometry. Both techniques are of special importance for the inversion of physical scatterer parameters from radar remote sensing data. A unified treatment of polarisation effects in radar polarimetry and polarimetric interferometry based on eigenvalue processing is addressed providing a link between signal processing techniques and coherent electromagnetic models for random media scattering. In this context, the main applications of polarimetry in radar remote sensing such as single and multi-frequency polarimetric classification, the estimation of surface roughness and moisture content and vegetation structure estimation are reviewed.

  • Development of Biological Micro Reactor Array System

    Etsuo SHINOHARA  Seiji KONDO  Kouki AKAHORI  Kohichi TASHIRO  Shuichi SHOJI  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1807-1813

    A micro reactor array for biochemical or biomedical use was developed. Conceptof this development is to get as much as biological data at the same time. Ninety-six micro reaction wells, volume of each well was 1.5 µl, were integrated in the array. The micro reactor array was fabricated on 1 mm thick silicon wafer and twelve pairs of a temperature sensor and a heater were formed on the backside. A tiny transparent window for optical measurement was formed at the center of bottom wall on each well. Several temperature gradients were applied to the array by means of few heaters and compared with simulation results to optimize the parameters. Finally, performance of the array was evaluated by basic DNA reaction. Advantages of the array system are the fast thermal response due to the small heat capacity and easy to make several reaction conditions in parallel.

15081-15100hit(20498hit)