The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

15841-15860hit(20498hit)

  • An Initial Code Acquisition Scheme for Indoor Packet DS/SS Systems with Macro/Micro Antenna Diversity

    Youhei IKAI  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2070-2077

    In this paper, we study macro/micro diversity techniques for code acquisition of a direct-sequence spread-spectrum signal in an indoor packet communication system. In the system discussed, the base station has several radio ports each with a cluster of antennas, and the terminal also has multiple antennas. The performance in the uplink of this system is analyzed under Lognormal shadowing and flat Rayleigh fading. The numerical results show great performance improvements by proposed diversity techniques. In addition, it is clarified that the mean acquisition time, which is often used as the measure of performance, is not suitable for packet radio systems as it underestimates the necessary preamble length for initial code acquisition.

  • A Parallel Tabu Search Based on Aspiration Control and Its Cooperative Execution

    Takashi MATSUMURA  Morikazu NAKAMURA  Shiro TAMAKI  Kenji ONAGA  

     
    PAPER

      Vol:
    E83-A No:11
      Page(s):
    2196-2202

    This paper proposes aspiration controls which restrains aspiration branches and keeps the original tabu-based searching by considering past and/or (predicted) future searching profiles. For implementation of the aspiration control we employ not only the short-term and long-term memory but also future memory which is first introduced in this paper as a new concept in the tabu search field. The tabu search with the aspiration control is also parallelized. Moreover two types of parallel cooperative searching scheme are proposed. Through computational experiment, we observe efficiency of our approach comparing to the traditional ones. Especially, we find that cooperative searching has possibility to improve the solution quality very well.

  • On a Weight Limit Approach for Enhancing Fault Tolerance of Feedforward Neural Networks

    Naotake KAMIURA  Teijiro ISOKAWA  Yutaka HATA  Nobuyuki MATSUI  Kazuharu YAMATO  

     
    PAPER-Fault Tolerance

      Vol:
    E83-D No:11
      Page(s):
    1931-1939

    To enhance fault tolerance ability of the feedforward neural networks (NNs for short) implemented in hardware, we discuss the learning algorithm that converges without adding extra neurons and a large amount of extra learning time and cycles. Our algorithm modified from the standard backpropagation algorithm (SBPA for short) limits synaptic weights of neurons in range during learning phase. The upper and lower bounds of the weights are calculated according to the average and standard deviation of them. Then our algorithm reupdates any weight beyond the calculated range to the upper or lower bound. Since the above enables us to decrease the standard deviation of the weights, it is useful in enhancing fault tolerance. We apply NNs trained with other algorithms and our one to a character recognition problem. It is shown that our one is superior to other ones in reliability, extra learning time and/or extra learning cycles. Besides we clarify that our algorithm never degrades the generalization ability of NNs although it coerces the weights within the calculated range.

  • The Optimized Threshold Decision of Pseudo Noise Code Acquisition in Spread Spectrum Communication

    Mau-Lin WU  Kuei-Ann WEN  Che-Sheng CHEN  

     
    LETTER

      Vol:
    E83-A No:11
      Page(s):
    2152-2159

    In this paper, the authors derived the distributions of the probability of detection and of false alarm in function of the decision threshold. An Optimized Threshold Decision (OTD) algorithm was proposed to decide the optimal threshold for reaching the best system performance in a given known channel noise. By applying this OTD algorithm, the multiple access capacity can thus be maximized.

  • Large-Capacity Photonic Packet Switch Prototype Using Wavelength Routing Techniques

    Keishi HABARA  Hiroaki SANJO  Hideki NISHIZAWA  Yoshiaki YAMADA  Shigeki HINO  Ikuo OGAWA  Yasumasa SUZAKI  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2304-2311

    A rack-mounted prototype packet switch that makes use of wavelength-division-multiplexing (WDM) interconnect techniques has been developed. The switch has a maximum throughput of 320 Gbit/s. It features a WDM star-based switch architecture, an electrical control circuit layer and a broad-bandwidth optical WDM layer. The basic characteristics of the broad bandwidth WDM layer, such as level diagram, transmission characteristics, 32-wavelength-channel switching, and high-speed optical gating within a 1.6-ns guard time, are described. Experimental results demonstrated that the switch can perform practical self-routing switch operations, such as address-extraction, optical buffering, and filtering for packet speeds of up to 10 Gbit/s. The switch is promising for such applications as a terabit-per-second switching node in future WDM transport networks.

  • A Photonic IP Switching Technique Using Code Division Multiplexing

    Shouhei NISHI  Isamu SAEKI  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2321-2330

    Increasing the capacity and intelligence of the next-generation Internet requires the application of optical technologies to switching nodes as well as transmission lines, and the development of advanced network architectures with end-to-end connection setup processing at the source node and autonomous routing at intermediate nodes. In the present paper, we design a new CDM-based switching scheme and node configurations that are suitable for a photonic IP switching system, in which a set of multiple-encoding CDM codes is utilized as routing information. In addition, we calculate the BER characteristics of the multiple-encoding CDM system by simulation. Under the condition that the chip duration of a certain code is a multiple of that of another code, the BER characteristics of the multiple-encoding system are shown to coincide with that of the single-encoding system by the longer code.

  • Performance Analysis of Borrowing with Directional Carrier Locking Strategy in Cellular Radio Systems

    Kwan-Lawrence YEUNG  Tak-Shing P. YUM  

     
    PAPER-Wireless Communication Switching

      Vol:
    E83-B No:10
      Page(s):
    2394-2401

    A new carrier based dynamic channel assignment for FDMA/TDMA cellular systems, called borrowing with directional carrier locking strategy, is proposed in this paper. When a call arrives at a cell and finds all voice channels busy, a carrier which consists of multiple voice channels can be borrowed from its neighboring cells for carrying the new call if such borrowing will not violate the cochannel interference constraint. Two analytical models, cell group decoupling analysis and phantom cell analysis, are constructed for evaluating the performance of the proposed strategy. Using cell group decoupling (CGD) analysis, a cell is decoupled together with its neigbors from the rest of the network for finding its call blocking probability. Unlike conventional approaches, decoupling enables the analysis to be confined to a local/small problem size and thus efficient solution can be found. For a planar cellular system with three-cell channel reuse pattern, using CGD analysis involves solving of seven-dimenional Markov chains. It becomes less efficient as the number of carriers assigned to each cell increases. To tackle this, we adopt the phantom cell analysis which can simplify the seven-dimensional Markov chain to two three-dimentional Markov chains. Using phantom cell analysis for finding the call blocking probability of a cell, two phantom cells are used to represent its six neighbors. Based on extensive numerical results, we show that the proposed strategy is very efficient in sharing resources among base stations. For low to medium traffic loads and small number of voice channels per carrier, we show that both analytical models provide accurate prediction on the system call blocking probability.

  • Fault Tolerant Crossconnect and Wavelength Routing in All-Optical Networks

    Chuan-Ching SUE  Sy-Yen KUO  Yennun HUANG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2278-2293

    This paper proposes a fault tolerant optical crossconnect (FTOXC) which can tolerate link, channel, and internal optical switch failures via spare optical channels, extra input/output (I/O) ports for an optical switch, and associated wavelength converters. It also proposes a fault tolerant wavelength routing algorithm (FTWRA) which is used in the normal and the restored state. The FTOXC and FTWRA can be applied to any all-optical network and can recover many types of failures. FTOXC can configure the number of working and spare channels in each output link based on the traffic demand. Two formulations in this paper can be used to determine the optimal settings of channels. A global optimal setting of working and spare channels in each link can be found by formulating the problem as an integer linear program (ILP). In addition, the number of working and spare channels in each link can be dynamically adjusted according to the traffic loads and the system reliability requirements. The tradeoff between these two conflicting objectives is analyzed by the Markov decision process (MDP).

  • Bidirectional Single-Fiber Multiwavelength Ring Networks

    Keang-Po HO  Shien-Kuei LIAW  Frank F.-K. TONG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2245-2252

    High-capacity multiwavelength ring networks with bidirectional WDM add/drop multiplexer (WADM) having built-in EDFAs is analyzed and demonstrated. All WDM channels can be added/dropped independently in each direction. The capacity of a bidirectional ring is found to be approximately twice that of an unidirectional ring. An eight-wavelength WADM is demonstrated for a data rate of 10 Gb/s per channel, providing an overall capacity of 80 Gb/s. The performance of the add/drop multiplexer is not degraded by backward backscattering light. The same WADM is also demonstrated to be able to serve as a bidirectional in-line optical amplifier.

  • A Realistically Architecture of WDM Ring Network Using OXC and OADM

    Masayuki KASHIMA  Naoki MINATO  Satoko KUTSUZAWA  Saeko OSHIBA  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2253-2260

    A configuration capable of wavelength routing is indispensable in constructing an optical network that has the IP-over-WDM capability. A ring network based on WDM is one of the configurations that can make wavelength routing possible. As the nodes used to construct a WDM ring network, we have the optical ADM system (OADM) and optical cross connect system (OXC). In this paper, in order to make ring network realistic, we examined a wavelength routing way using the number of possible wavelengths and the number of Node-Connections. A wavelength routing way placement on a lattice letter logically, and the all paths forward by 1 hop or 2 hops. As the parameters for determining the number of nodes and the distance of transmission, we evaluated the deterioration resulting from coherent crosstalk and OSNR. As a result of evaluation, the number of node-passes for 1 hop transmission amounts to less than 20. In addition, when we made a test bed and made evaluations, the results almost coincided with theoretical values.

  • Optimal Design of Survivable Photonic Transport Networks of Interconnected WDM Self-Healing Ring Systems

    Yasuhiro MIYAO  Hiroyuki SAITO  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2261-2269

    This paper proposes an optimal design scheme for photonic transport networks that interconnect multiple wavelength division multiplexing (WDM) self-healing ring systems by using optical cross connects (OXCs). To calculate the number of OXCs required in each hub to interconnect these ring systems, a virtual mesh network is generated, on which the route of each optical path (OP) going through multiple adjacent rings ("ring" is defined as circle in network topology) is determined based on a list of hubs. An integer-programming-based design problem is then formulated that minimizes the overall cost of facilities including OXCs as well as ring systems to accommodate a given demand. By solving this problem, we can simultaneously optimize required number of ring systems in each ring, wavelength assignment within each individual bidirectional ring system, required number of OXCs in each hub, and capacity to be allocated to each OP. Numerical examples show that the ring-based network is more cost-effective than the mesh restorable network when the cost of an OADM is lower than that of an OXC, and the OXC-to-fiber cost-coefficient ratio is sufficiently large.

  • Evaluation of Sites for Measuring Complex Antenna Factors: Comparison of Theoretical Calculation and TRL-Based Experiment

    Katsumi FUJII  Takashi IWASAKI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:10
      Page(s):
    2419-2426

    The transmission S-parameter between two dipole-elements is a measure to evaluate sites for measuring complex antenna factors (CAF). In this paper, the S-parameter between two dipole-elements on a ground plane is measured using a network analyzer with its TRL (Thru-Reflect-Line) calibration. The S-parameter is also calculated by the method of moment (MoM) and compared to the measurement results. The comparison shows that the calculated S-parameter is usable as a reference value in the evaluation of CAF measurement sites. As an example of the evaluation and selection of measurement sites, the transmission S-parameter on a finite ground plane is calculated using the hybrid method combined the geometrical theory of diffraction (GTD) and MoM. As a result, a preferable antenna setting on the finite ground plane is recommended.

  • Influence of Ions on Voltage Holding Property of LCDs

    Yuji NAKAZONO  Toshiyuki TAKAGI  Hiromoto SATO  Atsushi SAWADA  Shohei NAEMURA  Atsutaka MANABE  

     
    PAPER

      Vol:
    E83-C No:10
      Page(s):
    1570-1574

    Voltage holding property of liquid crystal (LC) cell for long period was investigated and the experimantal results were analyzed using a microscopic model considered the movement of ions in LC layer. The time dependent voltage decay curve observed in the experiment, which is not driven by the analysis with the conventional equivalent circuit comprised of the capacitance and the resistance, can be well explained by the microscopic model.

  • Color Sequential Silicon Microdisplay for Three-Dimensional Virtual Reality Applications

    Ho Chi HUANG  Kwok Cheong LEE  Chun Kwan YIP  Hon Lung CHEUNG  Po Wing CHENG  Hoi Sing KWOK  

     
    PAPER

      Vol:
    E83-C No:10
      Page(s):
    1622-1631

    We have developed a highly integrated liquid-crystal-on-silicon microdisplay for virtual reality applications. The silicon panel of 704 576 pixels was designed and fabricated by a custom 0.35 µm complementary metal oxide semiconductor (CMOS) technology with emphasis on surface planarization. Topographic variation of less than 100 within the pixels was achieved. The pixel pitch was 9.6 µm, fill factor was 88% and display area was 0.36" in diagonal. Eight-bit digital data drivers and gamma-correction circuitry were integrated onto the silicon panel for true gray scale and full color representation. The display panel was assembled with a mixed twisted nematic and birefringence liquid crystal cell for high contract at CMOS compatible voltage. Chromatic characterization of the display using 3-color-in-1 light emitting diode (LED) as light source was performed. Contrast ratios on the pixel array were 95, 72 and 56, respectively, for red, green and blue colors at 3 V root-mean-squared voltage. In addition, a three-dimensional (3D) video stream in interlaced format was generated by a 3D modeling code for test and demonstration. Control logic was implemented to extract the left and right video frames and perform system timing synchronization. The silicon microdisplay was driven in frame inversion and by color sequence. With two sets of silicon microdisplays and eyepieces for each eye, we have demonstrated a 3D stereoscopic display based on the silicon microdisplay technology.

  • Image Compression by New Sub-Image Block Classification Techniques Using Neural Networks

    Newaz M. S. RAHIM  Takashi YAHAGI  

     
    LETTER-Image

      Vol:
    E83-A No:10
      Page(s):
    2040-2043

    A new method of classification of sub-image blocks for digital image compression purposes using neural network is proposed. Two different classification algorithms are used to show their greater effectiveness than the conventional classification techniques. Simulation results are presented which demonstrate the effectiveness of the new technique.

  • A Digital Image Watermarking Scheme Withstanding Malicious Attacks

    Akira SHIOZAKI  Jiro TANIMOTO  Motoi IWATA  

     
    PAPER-Information Security

      Vol:
    E83-A No:10
      Page(s):
    2015-2022

    In this paper, we propose a new watermarking method which spreads an ID pattern with specific sequences and embeds it throughout the spatial domain of an image. A set of the sequences is a key for extracting the ID pattern. As an ID pattern is spread throughout an image, we can extract the ID pattern from a part of the image, that is a clipped image. We can also confirm authenticity by extracting the same ID pattern from several parts of an image. The proposed method is robust to StirMark, which is a benchmark tool to test robustness of watermarked images, as well as disturbance by noise addition and common image processing operations such as edge-enhancement, brightness-contrast conversion, posterization, Gauss filtering, median filtering, gamma correction, JPEG compression and clipping.

  • Autonomously Controlled Multiprotocol Wavelength Switching Network for Internet Backbones

    Yoshiaki YAMABAYASHI  Masafumi KOGA  Satoru OKAMOTO  

     
    INVITED PAPER

      Vol:
    E83-B No:10
      Page(s):
    2210-2215

    In order that they fully support human activities, new network services and applications are overwhelming conventional ones, such as telephony, facsimile, and telegraph. Demands for digital networks are exploding, not only in terms of quantity but also quality. Nobody can predict where these demands will lead. Traffic engineering, which is impossible in pure Internet protocol (IP) -based networks, is recognized as being indispensable for quality of service (QoS) control. It includes guaranteed services in terms of bandwidth, delay, delay variation (jitter), and service protection. The "engineered tunnel" through IP network supports virtual private networks (VPNs) and allows us to develop voice-over-IP (VoIP), teleconferencing and other secure private network services. This paper proposes the "photonic router" which makes use of wavelength-based networks for signal routing. IP packets having the same destination are bundled into a wavelength path. Interchange nodes along the path route control path routing on the basis of wavelength information, not on IP headers, which can not be read or processed with current optical techniques. In short, wavelength path routing offers "cut-through" in the photonic layer. This paper shows its feasibility by describing the combination of an optical cross-connect, payload assembler/disassembler, label controller, and IP router. Optical cross-connect systems, which are now being intensively studied worldwide, are deemed to be key equipment for a wavelength-path network with centralized control system. This paper proposes to apply the cross-connect to an IP network with distributed autonomous control.

  • Modeling of Nonuniform Coupled Transmission Lines Interconnect Using Genetic Algorithms

    Ahmad CHELDAVI  Gholamali REZAI-RAD  

     
    PAPER-Communication Theory and Signals

      Vol:
    E83-A No:10
      Page(s):
    2023-2034

    Based on genetic algorithm (GA) in this paper we present a simple method to extract distributed circuit parameters of a multiple coupled nonuniform microstrip transmission lines from it's measured or computed S-parameters. The lines may be lossless or lossy, with frequency dependent parameters. First a sufficient amount of information about the system is measured or computed over an specified frequency range. Then this information is used as an input for a GA to determine the inductance and capacitance matrices of the system. The theory used for fitness evaluation is based on the steplines approximation of the nonuniform transmission lines and quasi-TEM assumptions. Using steplines approximation the system of coupled nonuniform transmission lines is subdivided into arbitrary large number of coupled uniform lines (steplines) with different characteristics. Then using modal decomposition method the system of coupled partial differential equations for each step is decomposed to a number of uncoupled ordinary wave equations which are then solved in frequency-domain.

  • Combination of Turbo Decoding and Equalization Using Soft-Output Viterbi Algorithm

    Haruo OGIWARA  Naoki TSUKAHARA  

     
    LETTER-Coding Theory

      Vol:
    E83-A No:10
      Page(s):
    1971-1974

    An iterative decoder of turbo code over an inter-symbol interference channel is proposed. A component decoder realizes decoding and equalization simultaneously with the soft-output Viterbi algorithm (SOVA). A decoding algorithm and simulation results are shown.

  • On-Chip Active Guard Band Filters to Suppress Substrate-Coupling Noise in Mixed-Signal Integrated Circuits

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Electronic Circuits

      Vol:
    E83-C No:10
      Page(s):
    1663-1668

    An AC coupling configuration for the active guard band filters is introduced for suppressing substrate coupling noise in analog and digital mixed-signal integrated circuits. With this method, a substrate-coupling-noise cancellation signal can be supplied to a ground-level substrate by using a single 3-V supply on-chip circuits. Noise was suppressed to a maximum of less than 0.05 from 100 Hz to 2 MHz in a 0.35-µm CMOS test chip. Both experiments and a simulation based on the substrate extraction model showed the similar dependence of the noise-suppression effect on the arrangement of the guard-bands and analog circuits. The simulation is thus effective for optimizing the arrangement to suppress noise effects when designing a chip.

15841-15860hit(20498hit)