The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] BAN(1638hit)

1061-1080hit(1638hit)

  • Design of Multiple U-Shaped Slot Microstrip Patch Antenna in 5 GHz Band WLAN

    Jeong-Min JU  Gyey-Teak JEONG  Joong-Han YOON  Cheol-Soon KIM  Hyung-Sup KIM  Kyung-Sup KWAK  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E88-B No:2
      Page(s):
    821-825

    In this study, a multiple U-shaped slot microstrip patch antenna for application to the 5 GHz band is designed and fabricated. To obtain sufficient bandwidth in the operating band, foam is inserted between the substrate and ground plane, the type of form is styrofoam, the coaxial probe source is used, and the position of the probe shift is adjusted from the center to the left. The measured result (5.02-5.955 GHz) of the fabricated antenna satisfies the conditions of VSWR < 2.0 in 5 GHz band (5.15-5.35 GHz, 5.47-5.725 GHz, 5.725-5.825 GHz), gain of 3.88-9.28 dBi, and broad radiation pattern.

  • Variable Spreading and Chip Repetition Factors (VSCRF)-CDMA in Reverse Link for Broadband Packet Wireless Access

    Yoshikazu GOTO  Teruo KAWAMURA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    509-519

    This paper proposes Variable Spreading and Chip Repetition Factors (VSCRF)-Code Division Multiple Access (CDMA) broadband packet wireless access in the reverse link, which flexibly supports employing the same air interface in various radio environments such as a cellular system with a multi-cell configuration and local areas such as very-small cell, indoor, and isolated-cell environments. In VSCRF-CDMA, we propose two schemes: the first is a combination of time-domain spreading with an orthogonal code and chip repetition that achieves orthogonal multiple access in the frequency domain by utilizing a comb-shaped frequency spectrum, and the other is adaptive control of the spreading factor and chip repetition factor according to the cell configurations, number of simultaneously accessing users, propagation channel conditions, and major radio link parameters. Simulation results show that the proposed VSCRF-CDMA associated with the combination of the spreading factor, SFD, of four and the chip repetition factor, CRF, of four improves the required average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) for the average packet error rate of 10-2 by approximately 2.0 dB compared to DS-CDMA only employing SFD = 16 assuming four simultaneously accessing users in an exponentially decaying six-path Rayleigh fading channel with two-branch diversity reception.

  • A Generalized Diagonal Loading Robust Wideband Beam Pattern Synthesis Method

    ChangZheng MA  BoonPoh NG  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:2
      Page(s):
    590-592

    Optimum wideband beam pattern synthesis methods are usually sensitive to antenna elements gain, phase and position errors. In this letter, these errors are taken into account in a constraint optimization process, and a generalized diagonal loading algorithm is obtained. Computer simulations indicate the robustness of this new method.

  • Field Experiments on Throughput Performance above 100 Mbps in Forward Link for VSF-OFCDM Broadband Wireless Access

    Yoshihisa KISHIYAMA  Noriyuki MAEDA  Kenichi HIGUCHI  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    604-614

    This paper presents throughput performance along with power profiles in the time and frequency domains over 100 Mbps based on field experiments using the implemented Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) transceiver with a 100-MHz bandwidth in a real multipath fading channel. We conducted field experiments in which a base station (BS) employs a 120-degree sectored beam antenna with the antenna height of 50 m and a van equipped with a mobile station (MS) is driven at the average speed of 30 km/h along measurement courses that are approximately 800 to 1000 m away from the BS, where most of the locations along the courses are under non-line-of-sight conditions. Field experimental results show that, by applying 16QAM data modulation and Turbo coding with the coding rate of R = 1/2 to a shared data channel together with two-branch antenna diversity reception, throughput over 100 and 200 Mbps is achieved when the average received signal-to-interference plus noise power ratio (SINR) is approximately 6.0 and 14.0 dB, respectively in a broadband channel bandwidth where a large number of paths such as more than 20 are observed. Furthermore, the location probability for achieving throughput over 100 and 200 Mbps becomes approximately 90 and 20% in these measurement courses, which experience a large number of paths, when the transmission power of the BS is 10 W with a 120-degree sectored beam transmission.

  • Design and Measurement of a Miniaturized HTS Filter Using Microstrip Spiral Resonators

    Zhewang MA  Erito SAKURAI  Yoshio KOBAYASHI  

     
    PAPER-Microwaves

      Vol:
    E88-C No:2
      Page(s):
    216-220

    A high temperature superconductor (HTS) filter is designed and measured at 1.93 GHz, using microstrip half-wavelength spiral resonators. Resonant and coupling characteristics of miniaturized microstrip spiral resonators are investigated first. Then a 4-pole Chebyshev bandpass filter with a very narrow passband (4.1 MHz) is designed and realized using microstrip spiral resonators. The filter is fabricated using HTS YBCO films deposited on a LaAlO3 substrate. The measured frequency response of the filter agrees reasonably with the specifications, and shows that the filter owns excellent property of spurious resonance rejection over a wide frequency range.

  • New Algorithm for the Generalized Max-Min Fairness Policy Based on Linear Programming

    Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    LETTER-Network

      Vol:
    E88-B No:2
      Page(s):
    775-780

    The Generalized Max-Min Fairness policy (GMM) allocates in a fair way the available bandwidth among elastic calls by taking into account their minimum and maximum rate requirements. The GMM has been described in a five-step procedure, which has the advantage of an easy presentation, but does not come into details, as far as its computer implementation is concerned, and fails to describe the policy in a clear mathematical way. We propose a new algorithm for the GMM policy, in a clear mathematical way, based on Linear Programming (LP). The new algorithm is directly convertible into software. Numerical examples clarify our algorithm.

  • Bandpass Sampling Algorithm with Normal and Inverse Placements for Multiple RF Signals

    Miheung CHOE  Kiseon KIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E88-B No:2
      Page(s):
    754-757

    Bandpass sampling algorithm is effectively adopted to obtain the digital signal with significantly reduced sampling rate for a single radio frequency(RF) signal. In order to apply the concept to multiple RF signals, we propose bandpass sampling algorithms with the normal and the inverse placements since we are interested in uniform order of the spectrum in digital domain after bandpass sampling. In addition, we verify the propose algorithms with generalized equation forms for the multiple RF signals.

  • Network Supported Bandwidth Control for TCP in Hierarchical Mobile Internet

    Yosuke MATSUSHITA  Takahiro MATSUDA  Miki YAMAMOTO  

     
    PAPER-Internet

      Vol:
    E88-B No:1
      Page(s):
    266-273

    In the mobile Internet, a handover brings significant performance degradation of TCP due to bursty packet losses during handover processing. In this paper, we propose a new bandwidth control for improving the TCP performance. In the proposed system, when a mobile node changes its accessing base station, an intermediate router suppresses an available bandwidth to the corresponding TCP flow. Because suppressing the bandwidth results in reducing mis-forwarded packets to the old base station, the bursty packet losses can be avoided. In the hierarchical mobile network structure, which is recently developed in order to realize micro-mobility protocol, all packets transferred to mobile nodes are converged to several gateways such as mobility anchor points (MAP) in hierarchical Mobile IPv6 (HMIPv6). Therefore, the proposed system is suited to the hierarchical structure because it can be easily implemented at such gateways. Computer simulation results show that the proposed system can improve the TCP performance degradation especially in a situation where handovers frequently occur.

  • Annealing Algorithm Applied in Optimum Design of 2.4 GHz and 5.2 GHz Dual-Wideband Microstrip Line Filters

    Mao-Hsiu HSU  Jhin-Fang HUANG  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    47-56

    This paper presents a computer-aided design procedure of simulated annealing algorithm to optimize dual-wideband microstrip line filters with symmetrical at least 500 MHz bandwidths respectively. This method demonstrates the superiority of designing microstrip line dual-band filters. The value of characteristic impedances and electrical lengths of transmission lines synthesizing 2.4 GHz and 5.2 GHz dualband filters with a single input and a single output are adjusted to the annealing process by the optimization algorithm. The fabricated dual-wideband spectral transmittance and reflectance curves of these filters applying this method all effectively achieved desired high performances and resulted in a lower cost dual-band filters and open the way to commercial mass production. The method is applicable not only in 2.4 GHz and 5.2 GHz, but can be applied to any other multi-frequency bands.

  • A Novel Compact Dual-Band Bandpass Filter Using Dual-Mode Resonators

    Min-Hung WENG  Cheng-Yuan HUNG  Hung-Wei WU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:1
      Page(s):
    146-148

    The paper reports a compact and high performance dual-band bandpass filter (BPF) using two types of dual-mode resonators. The dual mode cross shaped resonator and the three dual mode ring resonators in the designed dual-band BPF are excited to control the first and second passband, respectively. It is shown that the designed and fabricated dual-band BPF has narrow bandwidths and very sharp attenuation rate due to the existence of the transmission zeros. The frequency response of the designed dual-band BPF shows good agreement between the simulations and experiments.

  • Log-Periodic Dipole Antenna Array-Type Optical Electric Field Sensor

    Naomi HIDAKA  Ken KOBAYASHI  Hideaki SUGAMA  Ryo USUI  Yoshihiro TANABE  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    98-104

    In the microwave band, Optical Electric Field Sensors (OEFS) provide an attractive method to measure electromagnetic fields precisely. It is difficult however, to develop an OEFS that operates with both wide bandwidth and high sensitivity. In this paper, we propose a Log-Periodic Dipole antenna Array (LPDA)-type OEFS that achieves high sensitivity over a wide bandwidth. The LPDA-type OEFS has a large number of electrodes that are attached to each of the antenna elements. Not only the lengths of the antenna elements but also the lengths of electrodes vary log-periodically. The OEFS responds to microwaves by synchronizing the propagation direction of light with the propagation direction of the microwave. An OEFS constructed of y-cut z-propagation Lithium Niobate (LN) demonstrates good stability against temperature variation. Theoretical analysis with respect to the refractive index variation and optical modulator with the crystal orientation will be provided in this paper. In addition, the characteristics of the proposed LPDA-type OEFS will be shown over wide bandwidth in the microwave band.

  • Effect of a Multi-Band OFDM-MIMO System on Frequency-Selective Propagation Characteristics

    Mitsugu OHKAWA  Ryuji KOHNO  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    19-27

    A multi-band OFDM-MIMO system, in which the multi-band OFDM method is combined with the MIMO concept, has been developed. In this system, the spectra of multi-band OFDM signals are adaptively shared to improve the path gain for MIMO multiple transmission. The OFDM signal is divided into multi-bands, and the divided signals are transmitted on an appropriate beam in each multi-band. Multi-band transmission improves the overall transmission capacity by reducing the degradation of frequency-selective channels. In this paper, we report on our evaluation of the multi-band OFDM-MIMO system with frequency-selective fading channels.

  • Artificial Dielectric Rectangular Resonator with Novel Anisotropic Permittivity and Its TE10δ Mode Waveguide Filter Application

    Achmad MUNIR  Noriaki HAMANAGA  Hiroshi KUBO  Ikuo AWAI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    40-46

    A miniaturized rectangular resonator made of a novel anisotropic artificial dielectric material is investigated which has advantages of small size and big separation of the higher-modes. To obtain a property of anisotropic permittivity, artificial dielectric material is fabricated by lamination of rectangular metal strips etched on a printed circuit board. Artificial dielectric rectangular resonators are designed to excite TE10δ mode selectively, aligning the rectangular metal patterns along the direction of the mode electric field line. The resonant frequencies and coupling coefficient of artificial dielectric rectangular resonators encapsulated in a metal waveguide are analyzed theoretically, and compared with the experimental result. As a microwave application, a high selectivity TE10δ mode bandpass filter (BPF) using two artificial dielectric rectangular resonators is demonstrated. A two-stage BPF with the center frequency of 1.718 GHz, bandwidth of 78 MHz, and insertion loss of 1.3 dB is successfully realized in a rectangular waveguide.

  • Compact Wideband Patch Antenna with Bent Y-Probe Feeding

    Qi DONG-SHENG  Li BIN-HONG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E88-C No:1
      Page(s):
    133-134

    A compact wideband patch antenna with bent Y-probe is proposed and studied. With the bent Y-probe and substrate thickness of about 0.14λ0, a bandwidth (VSWR below 2) of 54.6% has been achieved. The size of the antenna is decreased due to the shorting wall and Y-probe. The radiation patterns and the gains across the band are also studied.

  • A Generalized Performance Study of DS-CDMA Uplink/Downlink Receivers in Nakagami Wideband Fading Channel

    Mohammed ABDEL-HAFEZ  Fatih ALAGOZ  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:1
      Page(s):
    333-344

    In this paper, we consider a mobile system consisting of a single isolated circular cell with K independent users simultaneously sharing the channel using binary DS-CDMA to establish a full duplex channel with the base station. Both coherent and differential detection RAKE receivers with Maximal Ratio Combining (MRC) techniques are considered. The performance of two uplink/downlink receivers in Nakagami wideband fading channel is studied. Our approach relies on the use of total instantaneous interference power calculations instead of the use of average power approximations. We analyzed and derived new exact formulae for bit error probabilities for the considered system, and presented a set of numerical results both for the exact formulae and Gaussian approximation. The performance comparisons suggest that the exact formulae provide superior performance to Gaussian approximation especially at low number of users and either high fading parameters of the desired user or low fading parameters of the MAIs.

  • Miniaturized High-Temperature Superconductor Bandpass Filters Using Microstrip S-Type Spiral Resonators

    Zhewang MA  Tamio KAWAGUCHI  Yoshio KOBAYASHI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    57-61

    At frequencies currently used by mobile communications, many of the microstrip half-wavelength resonators are too large to realize miniaturized filters. For this reason, very small-sized microstrip spiral resonators and filters, using high-temperature superconductors (HTS), have been studied recently. In this paper, the resonant and coupling characteristics of microstrip G-type and S-type spiral resonators are investigated first by using an electromagnetic simulator. Then small-sized 4-pole, 8-pole, and 16-pole Chebyshev bandpass filters using S-type spirals are designed, respectively, with a midband frequency f0 = 1.93 GHz. The frequency responses of the filters satisfy well the desired specifications, and the measured frequency response of the 8-pole HTS filter agrees well with the theoretical prediction.

  • Bandpass Filters Using Tunable Half-Wavelength Resonators with Transmission Zeros

    Kouji WADA  Shinya WATANABE  Ryousuke SUGA  Osamu HASHIMOTO  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    68-76

    This paper focuses on the characteristics of tunable half-wavelength resonators and their applications to bandpass filters (BPFs). First, the resonance characteristics of various tunable half-wavelength resonators are examined for the tunabilities of transmission zeros and the center frequency of the proposed BPFs. We examine four types of tunable half-wavelength resonators, namely, an end-coupling resonator and three types of tap-coupling resonators. Secondly, the proposition and design of two types of BPFs using acquired resonators are carried out. The fabrication and experimental application of the resonators and designed BPFs are also performed based on coplanar waveguide (CPW) technologies. Their calculated and measured results are compared with each other. The results show that tunabilities of the transmission zero and the center frequency of the proposed BPF are obtained as expected.

  • Cell Selection Based on Shadowing Variation for Forward Link Broadband OFCDM Packet Wireless Access

    Akihito MORIMOTO  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER-Cell Selection

      Vol:
    E88-B No:1
      Page(s):
    150-158

    This paper proposes cell selection (CS) based on shadowing variation for the forward-link Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access. We clarify its effects using a broadband propagation channel model in a comparison with fast cell selection (FCS), which tracks the instantaneous fading variation, and with the conventional slow CS, which tracks only the distance-dependent path loss, based on radio link level simulations that take into account time-varying instantaneous fading and shadowing variations. The simulation results show that the achievable throughput with FCS improves slightly in a broadband channel with an increasing number of paths when the average path-loss difference between two cells is greater than 2 dB. Nevertheless, we show that the optimum CS interval becomes approximately 100 msec, because the interval can track the time-varying shadowing variation considering low-to-high mobility up to the maximum Doppler frequency of 200 Hz. Consequently, we show that the throughput by employing the CS based on shadowing variation with the selection interval of 100 msec is increased by approximately 5 and 15% compared to that using the conventional slow CS with the selection interval of 1 sec, for the maximum Doppler frequency of 20 and 200 Hz, respectively.

  • Dual-Mode Ring Bandpass Filter Using Defected Ground Structure with a Wider Stopband

    Ru Yuan YANG  Min Hung WENG  Hung Wei WU  Tsung Hui HUANG  Han-Ding HSUEH  Mau-Phon HOUNG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2150-2157

    This paper proposes a novel dual-mode ring bandpass filter (BPF) using defect ground structure (DGS). The proposed filter provides wide stopband characteristic resulted from the bandgap characteristic of DGS for suppressing spurious response of the dual-mode ring BPF. The H shaped DGS cell is modeled as a parallel LC resonator and the equivalent circuit parameters are extracted. The relationship between bandgap characteristic and design parameters of DGS dimension is discussed and the bandgap characteristic of DGS on the filter performance is also investigated. The novel proposed filter has the frequency characteristics with a central frequency f0 = 7.7 GHz, a 3-dB bandwidth of 4.5% and wider stopband from 9 to 15.5 GHz at the level of -35 GHz. Measured results of experimental filter has good agreement with the theoretical simulation results.

  • Semi-Parametric Effective-Bandwidth Estimator Based on Buffer Measurements

    Shigeo SHIODA  Daisuke ISHII  

     
    PAPER-Network

      Vol:
    E87-B No:12
      Page(s):
    3627-3636

    The notion of effective bandwidth provides an elegant and powerful mathematical basis for the provision of QoS-assured services over IP networks. In this paper, we propose a semi-parametric estimator of effective bandwidth, called Gaussian estimator using buffer masurement, for superposition of sources in IP networks. In contrast to most existing proposals concerning the effective bandwidth estimator, our proposal works based on a small set of measurements of the workload in the buffer of a router. We analytically show the property of the proposed estimator with respect to the dependence on the service rate. We provide numerical results to show that our proposed estimator is more accurate than estimators that rely only on the amount of traffic from sources.

1061-1080hit(1638hit)