The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CTI(8214hit)

7141-7160hit(8214hit)

  • A Zero-Voltage-Switching Controlled High-Power-Factor Converter with Energy Storage on Secondary Side

    Akira TAKEUCHI  Satoshi OHTSU  Seiichi MUROYAMA  

     
    PAPER-Power Supply

      Vol:
    E80-B No:12
      Page(s):
    1763-1769

    The proposed high-power-factor converter is constructed with a flyback converter, and locates the energy-storage capacitor on the secondary side of the transformer. A high power-factor can be obtained without needing to detect any current, and the ZVS operation can be achieved without auxiliary switches. To make the best use of these advantages in the converter, ZVS operations and power-factor characteristics in the converter were analyzed. From the analytical results, the effective control method for achieving ZVS was examined. Using a bread-board circuit controlled by this method, a power-factor of 0.99 and a conversion efficiency of 88% were measured.

  • Blind Deconvolution Based on Genetic Algorithms

    Yen-Wei CHEN  Zensho NAKAO  Kouichi ARAKAKI  Shinichi TAMURA  

     
    LETTER-Neural Networks

      Vol:
    E80-A No:12
      Page(s):
    2603-2607

    A genetic algorithm is presented for the blind-deconvolution problem of image restoration without any a priori information about object image or blurring function. The restoration problem is modeled as an optimization problem, whose cost function is to be minimized based on mechanics of natural selection and natural genetics. The applicability of GA for blind-deconvolution problem was demonstrated.

  • Filtering of White Noise Using the Interacting Multiple Model for Speech Enhancement

    Jae Bum KIM  K.Y. LEE  C.W. LEE  

     
    LETTER-Speech Processing and Acoustics

      Vol:
    E80-D No:12
      Page(s):
    1227-1229

    We have developed an efficient recursive algorithm based on the interacting multiple model (IMM) for enhancing speech degraded by additive white noise. The clean speech is modeled by the hidden filter model (HFM). The simulation results shows that the proposed method offers performance gains relative to the previous one with slightly increased complexity.

  • A Comparative Study of RCS Predictions of Canonical Rectangular and Circular Cavities with Double-Layer Material Loading

    Shoichi KOSHIKAWA  Dilek ÇOLAK  Ayhan ALTINTAŞ  Kazuya KOBAYASHI  Alexander I.NOSICH  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1457-1466

    A rigorous radar cross section (RCS) analysis is carried out for two-dimensional rectangular and circular cavities with double-layer material loading by means of the Wiener-Hopf (WH) technique and the Riemann-Hilbert problem (RHP) technique, respectively. Both E and H polarizations are treated. The WH solution for the rectangular cavity and the RHP solution for the circular cavity involve numerical inversion of matrix equations. Since both methods take into account the edge condition explicitly, the convergence of the WH and RHP solutions is rapid and the final results are valid over a broad frequency range. Illustrative numerical examples on the monostatic and bistatic RCS are presented for various physical parameters and the far field scattering characteristics are discussed in detail. It is shown that the double-layer lossy meterial loading inside the cavities leads to the significant RCS reduction.

  • Analysis for Scattering Problem of Directional Coupler for Slab Waveguides

    Masaji TOMITA  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1482-1490

    In this paper, scattering problem of the directional coupler for the slab waveguides are analyzed by the mode-matching method in the sense of least squares for the lowest order even TE mode incidence. It is considered that the analysis of this coupler for the slab waveguides presents the fundamental data to design the directional coupler for the three dimensional waveguides. This directional coupler is composed of three parallel slabs which are placed at equal space in the dielectric medium. Respective slabs are core regions of three respective waveguides. The periodic groove structure of finite extent is formed on the both surfaces of core region of the central waveguide among them. The power of incident TE mode is coupled to other two waveguides through periodic groove structure. The coupled TE mode propagates in the other waveguides to the same or opposite direction for the direction of incident mode which propagates in the waveguide having periodic structure when the Bragg condition is selected appropriately. The scattered field of each region of this directional coupler is described by the superpositions of the plane waves with bandlimited spectra, respectively. These approximate wave functions are determined by the minimization of the mean-square boundary residual. This method results in the simultaneous Fredholm type integral equations of the second kind for these spectra. The first order approximate solutions of the integral equations are derived and the coupling efficiency and scattered fields are analyzed on the basis of those solutions in this paper.

  • Diffraction of Electromagnetic Plane Wave by Circular Disk and Circular Hole

    Kohei HONGO  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1360-1366

    Electromagnetic field diffracted by conducting circular disk and circular hole in the conducting plate is formulated by the method of Kobayashi potential. The field is expressed by linear combination of functions which satisfy the required boundary conditions except on the disk or hole. Thus the functions may be regarded as eigen functions of the configuration. By imposing the remaining boundary conditions, we can derive the matrix equations for the expansion coefficients. It may be verified readily that each eigen function satisfies edge conditions for induced current on the disk and for aperture field distribution on the hole. It may also be verified that the solutions for the disk and the hole satisfy Babinet's principle. Matrix elements of the equations for the expansion coefficients are given by two kinds of infinite integrals and the series solutions for these integrals are derived. The validity of these expressions are verified numerically by comparing with the results obtained from direct numerical integrations.

  • An Incremental Theory of Diffraction for Objects with Local Cylindrical Shape

    Roberto TIBERIO  Stefano MACI  Alberto TOCCAFONDI  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1367-1373

    In this paper, a quite general systematic procedure is presented for defining incremental field contributions, that may provide effective tools for describing a wide class of scattering and diffraction phenomena at any aspect, whthin a unitary, self-consistent framework. This is based on a generalization of the localization process for cylindrical canonical problems with elementary source illumination and arbitrary observation aspects. In particular, it is shown that the spectral integral formulation of the exact solution may also be represented as a spatial integral convolution along the axis of the cylinder. Its integrand is then directly used to define the relevant incremental field contribution. This procedure, that will be referred to as a ITD (Incremental Theory of Diffraction) Fourier transform convolution localization process, is explicitly applied to both wedge and circular cylinder canonical configurations, to define incremental diffiraction and scattering contributions, respectively. These formulations are asymptotically approximated to find closed form high-frequency expression for the incremental field contributions. This generalization of the ITD lacalization process may provide a quite general, systematic procedure to find incremental field contributions that explicitly satisfy reciprocity and naturally lead to the UTD ray field representation, when it is applicable.

  • H-Polarized Diffraction by a Wedge Consisting of Perfect Conductor and Lossless Dielectric

    Se-Yun KIM  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1407-1413

    The H-polarized diffraction by a wedge consisting of perfect conductor and lossless dielectric is investigated by employing the dual integral equations. Its physical optics diffraction coefficients are expressed in a finite series of cotangent functions weighted by the Fresnel reflection coefficients. A correction rule is extracted from the difference between the diffraction coefficients of the physical optics field and those of the exact solution to a perfectly conducting wedge. The angular period of the cotangent functions is changed to satisfy the edge condition at the tip of the wedge, and the poles of the cotangent functions are relocated to cancel out the incident field in the artificially complementary region. Numerical results assure that the presented correction is highly effective for reducing the error posed in the physical optics solution.

  • Linear Equivalent Circuit of a Digital Gate for Characterization of Malfunction Mechanism

    Naoki KAGAWA  Osami WADA  Ryuji KOGA  

     
    LETTER

      Vol:
    E80-B No:11
      Page(s):
    1652-1653

    Time-related jitters caused by small noise voltage due to electromagnetic noise induce malfunction of digital equipment. The jitters increase with not only magnitude of the noise but also resonance of digital circuits in the equipment. In this report, we proposes a linear equivalent circuit model of a digital CMOS gate for analyzing circuit resonance and verifies the validity of the model.

  • On Synchronization for Burst Transmission

    A.J. Han VINCK  A.J. van WIJNGAARDEN  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2130-2135

    We consider methods to locate sync words in packet or frame transmission over the additive white Gaussian noise channel. Our starting point is the maximization of the probability of correctly locating the sync word. We extend Massey's original result to the specific synchronization problem, where the sync words is prefixed to the data stream and each packet is preceded by idle transmission or additive white Gaussian noise. We give simulation results for several interesting sync words such as Barker sequences of length 7 and 13 and a sync word of length 17 with good cross-correlation properties. One of the conclusions is that the newly derived formula for the probability of correctly locating the sync word enables the reduction of the false sync detection probability.

  • A Path Following Algorithm for Finding All the Solutions on Non-linear Equation System in a Compact Region

    Hisato FUJISAKA  Hisakazu NISHINO  Chikara SATO  Yuuji SATOH  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E80-A No:11
      Page(s):
    2308-2317

    We propose a method to search all the zeros of a complex function in a given compact region D Cn. The function f: Cn Cn to be considered is assumed to consist of polynomial and transcendental terms and to satisfy f (x) Rn for any x Rn. Using the properties of such a complex function, we can compute the number of zeros and determine the starting points of paths on the boundary of D, which attain all the zeros of f in D without encountering a singular point. A piecewiselinear approximation of the function on a triangulation is used for both computing the number of zeros and following the paths.

  • An Upper Bound on Bit Error Rate for Concatenated Convolutional Code

    Tadashi WADAYAMA  Koichiro WAKASUGI  Masao KASAHARA  

     
    PAPER-Coding Theory

      Vol:
    E80-A No:11
      Page(s):
    2123-2129

    This paper presents a new upper bound on overall bit error rate (BER) for a concatenated code which consists of an inner convolutional code and an outer interleaved Reed-Solomon code. The upper bound on BER is derived based on a lower bound on the effective minimum distance of the concatenated code. This upper bound can be used for the cases when the interleaver size is small such that the conventional upper bound is not applicable.

  • An Almost Sure Recurrence Theorem with Distortion for Stationary Ergodic Sources

    Fumio KANAYA  Jun MURAMATSU  

     
    LETTER-Source Coding/Channel Capacity

      Vol:
    E80-A No:11
      Page(s):
    2264-2267

    Let {Xk}k=- be a stationary and ergodic information source, where each Xk takes values in a standard alphabet A with a distance function d: A A [0, ) defined on it. For each sample sequence X = (, x-1, x0, x1, ) and D > 0 let the approximate D-match recurrence time be defined by Rn (x, D) = min {m n: dn (Xn1, Xm+nm+1) D}, where Xji denotes the string xixi+1 xj and dn: An An [0, ) is a metric of An induced by d for each n. Let R (D) be the rate distortion function of the source {Xk}k=- relative to the fidelity criterion {dn}. Then it is shown that lim supn-1/n log Rn (X, D) R (D/2) a. s.

  • Studies on the Characterization and Optimal Design of E-Plane Waveguide Bends

    Zhewang MA  Taku YAMANE  Eikichi YAMASHITA  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1395-1401

    Characterization of a mitered, a squarely cut, and a circular E-plane bend in rectangular waveguide is implemented by combining the port reflection coefficient method and the mode-matching method. Based on the port reflection coefficient method, the two-port waveguide bend is converted to a one-port structure comprised of cascaded waveguide step-junctions. After solving the reflection coefficient caused by these waveguide step-junctions using the mode-matching method, the desired scattering parameters of the bend are obtained readily. Convergence properties of the calculated numerical results are validated. Influences of the mitered, the squarely cut, and the circular part of the bend on the scattering parameters are investigated, and the optimal design dimensions for realizing wide-band and low return loss bends are found. Based on the optimal compensation dimension, an E-plane waveguide circular bend is fabricated and tested. The measured result agrees well with the theoretical prediction, and a full-band matched bend is practically realized.

  • Stochastic Integral Equation for Rough Surface Scattering

    Hisanao OGURA  Zhi-Liang WANG  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1337-1342

    The present paper gives a new formulation for rough surface scattering in terms of a stochastic integral equation which can be dealt with by means of stochastic functional approach. The random surface is assumed to be infinite and a homogeneous Gaussian random process. The random wave field is represented in the stochastic Floquet form due to the homogeneity of the surface, and in the non-Rayleigh form consisting of both upward and downward going scattered waves, as well as in the extended Voronovich form based on the consideration of the level-shift invariance. The stochastic integral equations of the first and the second kind are derived for the unknown surface source function which is a functional of the derivative or the increment of the surface profile function. It is also shown that the inhomogeneous term of the stochastic integral equation of the second kind automatically gives the solution of the Kirchhoff approximation for infinite surface.

  • Analog Adaptive Filtering Based on a Modified Hopfield Network

    Mariko NAKANO-MIYATAKE  Hector PEREZ-MEANA  

     
    PAPER-Stochastic Process/Signal Processing

      Vol:
    E80-A No:11
      Page(s):
    2245-2252

    In the last few years analog adaptive filters have been a subject of active research because they have the ability to handle in real time much higher frequencies, with a smaller size and lower power consumption that their digital counterparts. During this time several analog adaptive filter algorithms have been reported in the literature, almost all of them use the continuous time version of the least mean square (LMS) algorithm. However the continuous time LMS algorithm presents the same limitations than its digital counterpart, when operates in noisy environments, although their convergence rate may be faster than the digital versions. This fact suggests the necessity of develop analog versions of recursive least square (RLS) algorithm, which in known to have a very low sensitivity to additive noise. However a direct implementation of the RLS in analog way would require a considerable effort. To overcome this problem, we propose an analog RLS algorithm in which the adaptive filter coefficients vector is estimated by using a fully connected network that resembles a Hopfield network. Theoretical and simulations results are given which show that the proposed and conventional RLS algorithms have quite similar convergence properties when they operate with the same sampling rate and signal-to-noise ratio.

  • Scattering and Diffraction of a Plane Wave by a Randomly Rough Half-Plane: Evaluation of the Second-Order Perturbation

    Yasuhiko TAMURA  Junichi NAKAYAMA  Kazuteru KOMORI  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1381-1387

    This paper deals with the scattering and diffraction of a plane wave by a randomly rough half-plane by three tools: the small perturbation method, the Wiener-Hopf technique and a group theoretic consideration based on the shift-invariance of a homogeneous random surface. For a slightly rough case, the scattered wavefield is obtained up to the second-order perturbation with respect to the small roughness parameter and represented by a sum of the Fresnel integrals with complex arguments, integrals along the steepest descent path and branch-cut integrals, which are evaluated numerically. For a Gaussian roughness spectrum, intensities of the coherent and incoherent waves are calculated in the region near the edge and illustrated in figures, in terms of which several characteristics of scattering and diffraction are discussed.

  • Microwave Inverse Scattering: Quantitative Reconstruction of Complex Permittivity for Different Applications

    Christian PICHOT  Pierre LOBEL  Cedric DOURTHE  Laure Blanc-FERAUD  Michel BARLAUD  

     
    INVITED PAPER

      Vol:
    E80-C No:11
      Page(s):
    1343-1348

    This paper deals with two different quantitative inversion algorithms for reconstructing the complex permittivity profile of bounded inhomogeneous objects from measured scattered field data. The first algorithm involves an imaging method with single frequency excitation and multiincidence illumination and the second algorithm involves a method with synthetic pulse (multifrequency mode) excitation for objects surrounded by freespace or buried in stratified half-space media. Transmission or reflection imaging protocols are considered depending on aimed applications: microwave imaging in free-space from far-field data for target identification, microwave imaging from near-field data for nondestructive testing (NDT), microwave tomography of buried objects for mine detection and localization, civil engineering and geophysical applications. And Edge-Preserving regularization scheme leading to a significant enhancement in the image reconstructions is also proposed. The methods are illustrated with synthetic and experimental data.

  • Solution of the Eigenmode Problem for an Open Generalized Transmission Line by Domain Product Technique

    Vitaliy CHUMACHENKO  Olexandr KRAPYVNY  Vladimir ZASOVENKO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1476-1481

    In this paper an algorithm for numerical investigation of the transmission line having a generalized polygonal cross-section and open interface is proposed. Solution of the eigenmode problem is based on the method called the domain product technique, which employs a Mathieu function expansion and provides an efficient technique to the analysis of the structures with multiangular boundaries. An agreement at the obtained numerical results with existing data confirms the applicability of the theoretical analysis given in the paper.

  • Analytical Parametrization of a 2D Real Propagation Space in Terms of Complex Electromagnetic Beams

    Emilio GAGO - RIBAS  Maria J.Gonzalez MORALES  Carlos Dehesa MARTINEZ  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1434-1439

    Gaussian beams constitute a very powerful tool to analyze radiation and scattering problems in high frequency regimes. The analysis of this kind of beams may be done by performing an analytical continuation of the real sources into the complex space. This is also a very powerful technique that arise, not only to this kind of solutions, but also to other solutions that may be very useful even for low frequency regimes. A complete parametrization of real propagation space in terms of the different type of complex beams solutions is presented in this paper. The analysis in the complex domain arises to different regions in the real space which may be anticipated and described through analytical transition regions. Some important conclusions may be derived from the results obtained, in particular the results related to the complex far field condition.

7141-7160hit(8214hit)