I-Cheng CHANG Chung-Lin HUANG Chen-Chang LEIN Liang-Chih WU Shin-Hwa YEH
For medical imaging, non-rigid motion analysis of the heart deformability is a nontrivial problem. This paper introduces a new method to analyze the gated SPECT (Single Photon Emission Computed Tomography) imges for 3-D motion information of left ventricular. Our motion estimation method is based on a new concept called normal direction constraint" in that the normal of a surface patch of some deforming objects at certain time instant is constant. This paper consists of the following processes: contour extraction, slices interpolation, normal vector field generation, expanding process, motion estimation for producing a 2-D motion vector field, and deprojection for a 3-D motion vector field. In the experiments, we will demonstrate the accuracy of our method in analyzing the 3-D motion field of deforming object.
An active contour model which is called Snakes was proposed to extract the border line of an object from an image. This method presents the minimization problem of the energy function defined on the contour curve. The authors obtained an excellent result by applying genetic algorithm to the contour extraction. In this paper, the biphased genetic algorithm, which is a new type of genetic algorithm, is proposed to minimize the energy function of Snakes. The parameters of the genetic algorithm are examined to tune up its local and global search abilities. The biphased genetic algorithm composed of two phases of genetic search is constructed to use both abilities of the exploration and the exploitation properties of the genetic algorithm. The processing results of the biphased genetic algorithm are compared with those of the previous methods, and the advantages of the proposed algorithm are shown by several experiments.
Satoshi NAKAGAWA Takahiro WATANABE Yuji KUNO
This paper describes a new feature extraction model (Active Model) which is extended from the active contour model (Snakes). Active Model can be applied to various energy minimizing models since it integrates most of the energy terms ever proposed into one model and also provides the new terms for multiple images such as motion and stereo images. The computational order of energy minimization process is estimated in comparison with a dynamic programming method and a greedy algorithm, and it is shown that the energy minimization process in Active Model is faster than the others. Some experimental results are also shown.
Masahiko NISHIMOTO Hiroyoshi IKUNO
A simple numerical method for calculating paths of creeping rays around an arbitrary convex object is presented. The adventage of this method is that the path of creeping ray is iteratively determined from initial values of incident point and incident direction of the creeping ray without solving differential equation of geodesic path. As the numerical examples, the path of creeping ray on the prolate spheroid and the resonance path of natural modes are shown.
Shigeru YOSHIMORI Masanori SUEYOSHI Ryuichi TAKANO Akiko FUJIWARA Mitsuo KAWAMURA
Precise measurements of temperature dependence of the Andreev reflection current for the N–I–S junctions were carried out. Au and Pb were used as N (normal metal) and S (superconducting material), respectively. The experimental results agreed with the analyses based on the Arnold theory.
Numerical studies of reaction–diffusion systems which consist of chaotic oscillators are carried out. The Rössler oscillators are used, which are arranged two–dimensionally and coupled by diffusion. Pacemakers where the average periods of the oscillators are artificially changed are set to produce target patterns. It is found that target patterns emerge from pacemakers and grow up as if they were in a regular oscillatory medium. The wavelength of the pattern can be varied and controlled by changing the parameters (size and frequency) of the pacemaker. The behavior of the coupled system depends on the size of the system and the strength of the pacemaker. When the system size is large, the Poincar
Naoki MIKAMI Tsuneaki DAISHIDO
This letter proposes the method using a filter to suppress the very large noise obstructive to the radio pulsar surveys. This noise suppression filter is constructed from the average of the amplitude spectrum of pulsar signal for each channel. Using this method, the dispersion measure, one of the important parameters in the pulsar surveys, can easily be extracted.
Kazuharu YAMATO Toshihide ASADA Yutaka HATA
In this letter we propose an interpolation technique for low-quality fingerprint images for highly reliable feature extraction. To improve the feature extraction rate, we extract fingerprint features by referring to both the interpolated image obtained by using a directional Laplacian filter and the high-contrast image obtained by using histogram equalization. Experimental results show the applicability of our method.
Binary sequences with good correlation properties are required for a variety of engineering applications. We previously proposed simple methods to generate binary sequences based on chaotic nonlinear maps. In this paper, statistical properties of chaotic binary sequences generated by Chebyshev maps are discussed. We explicitly evaluate the correlation functions by means of the ensemble–average technique based on the Perron–Frobenius (P–F) operator. As a consequence, we can confirm an important role of the P–F operator in evaluating statistics of chaos by means of the ensemble-average technique.
Toshihiko SHIBAZAKI Teruhiro KINOSHITA Ryoji SHIN'YAGAITO
The problem of electromagnetic scattering by inductive discontinuities located in rectangular waveguides, in particular when dealing with discontinuous conductors of finite thickness, is analyzed using the modified residue-calculus method, and form of the equation suitable for a numerical calculation is derived. The incident wave is taken to be the dominant mode, and reflection and transmission properties of an asymmetric inductive iris are discussed. After the modal representation of the filed, the modal matching is apply to satisfy the boundary conditions at the discontinuity. And using the modified residue-calculus method, simultaneous infinite equations, which are concerned with the scattered mode coefficients, are derived. Then they are approximated at the thick diaphragm. The solutions obtained take on the form of an infinite product, and a numerical solution based on the method of successive approximations is presented as a technique for concretely determining the reflection coefficients. As confirmation, experiments are also carried out in the X-band and close agreement is shown between the calculated and experimental values.
Hirofumi HIRAYAMA Norio TAKEUCHI Yuzou FUKUYAMA
An optimal control theory has been applied to a biological compartment system to show a method to analyze the control principle of biological system represented by compartments. Present theory has been proposed to afford a theoretical back ground and validity for the strategy of drug administration or control of the anesthetic agent in practical medicine. The instantaneous change of the concentration of a given material within a biological system has been expressed by differential equations. Each compartment has been set to be transferred a material from all other compartments and conversely each compartment sends it to all other compartments. The control input was restricted to be one kind. The performance function involved the deviation from the target value, the rate of change in concentration and the amount of the control variables. The biological system was defined to operate optimally only when the performance function has been minimized during a given time period. By the optimal control theory of Pontoriagin, above biological problem has been converted to a mathematical problem and was solved numerically by multiple shooting method. The calculated trajectory of the optimal control has been asymmetric parabolic one with the maximum at its initiation and the minimum at the middle of total reaction time. This pattern has been consistent with that of probable transient change of the concentration of anesthetic agent when it has been inhalated under the most up to date "Rapid Inhalation Induction" method. The optimal trasient change of the concentration at each compartment has beeb affected by the difference in time dependent nature and the magnitude of the transfer rate. Present theory afforded a method to analyze the control strategy of biological system expressed by compartments model and showed an availability for actual clinical medicine. The optimal control principle must be a most adequate one to describe the Homeostasis in biological system.
This paper proposes a new class of unidirectional byte error locating codes, called single symmetric bit error correcting and single unidirectional byte error locating codes, or SEC–SUbEL codes. Here, "byte" denotes a cluster of b bits, where b2. First, the necessary and sufficient conditions of the codes are clarified, and then code construction method is demonstrated. The lower bound on check bit length of the SEC–SUbEL codes is derived. Based on this, the proposed codes are shown to be very efficient in some range of the information length. The code design concept presented for the SEC–SUbEL codes induces the generalized unidirectional byte error locating codes with single symmetric bit error correction capability.
Introducing a general statistical model of image noise, we present an optimal algorithm for computing 3-D motion from two views without involving numerical search: () the essential matrix is computed by a scheme called renormalization; () the decomposability condition is optimally imposed on it so that it exactly decomposes into motion parameters; () image feature points are optimally corrected so that they define their 3-D depths. Our scheme not only produces a statistically optimal solution but also evaluates the reliability of the computed motion parameters and reconstructed points in quantitative terms.
Vijaya Gopal BANDI Hideki ASAI
A new algorithm, which is incorporated into the waveform relaxation analysis, for efficiently simulating the transient response of single lossy transmission lines or lossy coupled multiconductor transmission lines, terminated with arbitrary networks will be presented. This method exploits the inherent delay present in a transmission line for achieving simulation efficiency equivalent to obtaining converged waveforms with a single iteration by the conventional iterative waveform relaxation approach. To this end we propose 'line delay window partitioning' algorithm in which the simulation interval is divided into sequential windows of duration equal to the transmission line delay. This window scheme enables the computation of the reflected voltage waveforms accurately, ahead of simulation, in each window. It should be noted that the present window partitioning scheme is different from the existing window techniques which are aimed at exploiting the non–uniform convergence in different windows. In contrast, the present window technique is equivalent to achieving uniform convergence in all the windows with a single iteration. In addition our method eliminates the need to simulate the transmission line delay by the application of Branin's classical method of characteristics. Further, we describe a simple and efficient method to compute the attenuated waveforms using a particular form of lumped element model of attenuation function. Simulation examples of both single and coupled lines terminated with linear and nonlinear elements will be presented. Comparison indicates that the present method is several times faster than the previous waveform relaxation method and its accuracy is verified by the circuit simulator PSpice.
This paper describes a procedural detailed compaction method for the symbolic layout design of CMOS leaf cells and its algorithmic aspects. Simple symbolic representations that are loosely designed by users in advance are automatically converted into densely compacted physical patterns in two phases: symbolic–to–pattern conversion and segment–based detailed compaction. Both phases are executed using user-defined procedures and a specified set of design rules. The detailed compaction utilizes a segment–based constraint graph generated by an extended plane sweep method where various kinds of design rules can be applied. Since various kinds of basic operations can be applied to the individual segments of patterns in the procedures, the detailed procedure for processing can be described in accordance with fabrication process technologies and the corresponding sets of design rules. This combined stepwise procedure provides a highly flexible framework for the symbolic layout of CMOS leaf cells. The proposed approach was implemented in a symbolic layout system called CAMEL. To date, more than 300 kinds of symbolic representations of CMOS leaf cells have been designed and are stored in the database. Using several different sets of design rules, symbolic representations have been automatically converted into compacted patterns without design rule violations. The areas of those generated patterns were averaged at 98% of the manually designed patterns. Even in the worst case, the increases in area were less than about 10% of the manually designed ones. Furthermore, since processing times are much shorter than manual design periods, for example, 300 kinds of symbolic representations can be converted to corresponding physical patterns in only a day. It is evident, through these practical design experiences with CAMEL, that our approach is more flexible and process–tolerant than conventional ones.
An emitter–coupled pair with a dynamic bias current and a source–coupled pair with a dynamic bias current are proposed as an exponential–law element and a square–law element that operate as a floating bipolar junction transistor (BJT) and a floating MOS field–effect transistor (MOSFET). In bipolar technology, a hyperbolic sine function circuit and a hyperbolic cosine function circuit are easily obtained by subtracting and summing the output currents of two symmetrical exponential–law elements with positive and negative input signals. In the same manner, an operational transconductance amplifier (OTA) and a squaring circuit are obtained by subtracting and summing the output currents of two symmetrical square-law elements with positive and negative input signals in CMOS technology. The proposed OTA and squaring circuit possess the widest input voltage range ever reported.
Hiroshi OHNO Kiyoharu AIZAWA Mitsutoshi HATORI
Fractal image coding using iterated transformations compresses image data by exploiting the self–similarity of an image. Its compression performance has already been discussed in [2] and several other papers. However the relation between the performance and the self–similarity remains unclear. In this paper, we evaluate fractal coding from the perspective of this relationship.
Tetsushi UETA Hiroshi KAWAKAMI
Some qualitative properties of an inductively coupled circuit containing two Josephson junction elements with a dc source are investigated. The system is described by a four–dimensional autonomous differential equation. However, the phase space can be regarded as S1×R3 because the system has a periodicity for the invariant transformation. In this paper, we study the properties of periodic solutions winding around S1 as a bifurcation problem. Firstly, we analyze equilibria in this system. The bifurcation diagram of equilibria and its topological classification are given. Secondly, the bifurcation diagram of the periodic solutions winding around S1 are calculated by using a suitable Poincar
Takeshi KAMIO Hiroshi NINOMIYA Hideki ASAI
In this letter we present an electronic circuit based on a neural net to compute the discrete Walsh transform. We show both analytically and by simulation that the circuit is guaranteed to settle into the correct values.
Kiyotoshi YASUMOTO Naoto MAEKAWA Hiroshi MAEDA
A coupled-mode analysis of a symmetric planar nonlinear directional coupler (NLDC) is presented by using a singular perturbation scheme. The effects of linear coupling and nonlinear modification of refractive index are treated to be small perturbations, and the modal fields of isolated linear waveguides are employed as the basis of propagation model. The self-consistent first-order coupled-mode equations governing the transfer of optical power along the NLDC are obtained in analytically closed form. It is shown that tha critical power for optical switching derived from the coupled-mode equations is in close agreement with that obtained by the numerical analysis using the finite difference beam propagation mathod.