The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FPA(6hit)

1-6hit
  • Design of a Readout Circuit for Improving the SNR of Satellite Infrared Time Delay and Integration Arrays

    Chul Bum KIM  Doo Hyung WOO  Hee Chul LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:8
      Page(s):
    1406-1414

    This paper presents a novel CMOS readout circuit for satellite infrared time delay and integration (TDI) arrays. An integrate-while-read method is adopted, and a dead-pixel-elimination circuit for solving a critical problem of the TDI scheme is integrated within a chip. In addition, an adaptive charge capacity control method is proposed to improve the signal-to-noise ratio (SNR) for low-temperature targets. The readout circuit was fabricated with a 0.35-µm CMOS process for a 5004 mid-wavelength infrared (MWIR) HgCdTe detector array. Using the circuit, a 90% background-limited infrared photodetection (BLIP) is satisfied over a wide input range (∼200–330 K), and the SNR is improved by 11 dB for the target temperature of 200 K.

  • High-Performance Modulation-Doped Heterostructure-Thermopiles for Uncooled Infrared Image-Sensor Application

    Masayuki ABE  Noriaki KOGUSHI  Kian Siong ANG  René HOFSTETTER  Kumar MANOJ  Louis Nicholas RETNAM  Hong WANG  Geok Ing NG  Chon JIN  Dimitris PAVLIDIS  

     
    PAPER-GaN-based Devices

      Vol:
    E95-C No:8
      Page(s):
    1354-1362

    Novel thermopiles based on modulation doped AlGaAs/InGaAs and AlGaN/GaN heterostructures are proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to 4,900 V/W with 110 µs for AlGaAs/InGaAs, and to 460 V/W with 9 µs for AlGaN/GaN thermopiles, respectively. Based on integrated HEMT-MEMS technology, the AlGaAs/InGaAs 3232 matrix FPAs are fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.

  • Pixel-Level ADC with Two-Step Integration for 2-D Microbolometer IRFPA

    Chi Ho HWANG  Doo Hyung WOO  Hee Chul LEE  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:12
      Page(s):
    1909-1912

    A readout circuit incorporating a pixel-level analog-to-digital converter (ADC) is studied for 2-dimensional microbolometer infrared focal plane arrays (IRFPAs). The integration time and signal-to-noise ratio (SNR) is improved using the current-mode bias and MSB skimming. The proposed pixel-level ADC is a two-step configuration, so its power consumption is very low. The readout circuit was designed using a 0.35 µm 2-poly 4-metal CMOS process for a 320240 microbolometer array with a pixel size of 35µm35µm. The noise equivalent temperature difference (NETD) was estimated to be 47 mK, with a power consumption of 390 nW for a pixel-level ADC.

  • An Improved Non-uniformity Correction Algorithm for IRFPA Based on Neural Network

    Shao-sheng DAI  Tian-qi ZHANG  

     
    LETTER-Optoelectronics

      Vol:
    E92-C No:5
      Page(s):
    736-739

    Aiming at traditional neural networks non-uniformity correction (NUC) algorithm's disadvantages such as slow convergence, low correction precision and difficulty to meet the real-time engineering application requirements of infrared imaging system, an improved NUC algorithm for infrared focal plane arrays (IRFPA) based on neural network is proposed. The algorithm is based on linear response of detector, and in order to realize fast and synchronization convergence of correction parameters the each original image data is normalized to a value close to one. Experimental results show the method has the faster convergence speed and better vision effect than the traditional algorithms, and it is better applied in practical projects.

  • A Nonlinear Piecewise Scheme for Non-uniformity Correction in IRFPA

    Shao-sheng DAI  Tian-qi ZHANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1698-1701

    A nonlinear piecewise scheme for non-uniformity correction in infrared focal plane arrays (IRFPA) is presented. In this method, utilizing the nonlinear piecewise scheme of detector response has extended the larger dynamic range of IRFPA response and the higher correcting accuracy than the non-uniformity correction algorithms based on linear response model of IRFPA detector. Based on the principle of this method, the mathematical model is established. At last experimental results are given out. The results show that it has higher correction precision, fewer calculations, and is easier to implement real-time non-uniformity correction of IRFPA by hardware circuit.

  • Optimum Solution of On-Chip A/D Converter for Cooled Type Infrared Focal Plane Array

    Sang Gu KANG  Doo Hyung WOO  Hee Chul LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:3
      Page(s):
    413-419

    Transferring the image information in analog form between the focal plane array (FPA) and the external electronics causes the disturbance of the outside noise. On-chip analog-to-digital (A/D) converter into the readout integrated circuit (ROIC) can eliminate the possibilities of the cross-talk of noise. Also, the information can be transported more efficiently in power in the digital domain compared to the analog domain. In designing on-chip A/D converter for cooled type high density infrared detector array, the most stringent requirements are power dissipation, number of bits, die area and throughput. In this study, pipelined type A/D converter was adopted because it has high operation speed characteristics with medium power consumption. Capacitor averaging technique and digital error correction for high resolution was used to eliminate the error which is brought out from the device mismatch. The readout circuit was fabricated using 0.6 µm CMOS process for 128 128 mid-wavelength infrared (MWIR) HgCdTe detector array. Fabricated circuit used direct injection type for input stage, and then S/N ratio could be maximized with increasing the integration capacitor. The measured performance of the 14 b A/D converter exhibited 0.2 LSB differential non-linearity (DNL) and 4 LSB integral non-linearity (INL). A/D converter had a 1 MHz operation speed with 75 mW power dissipation at 5 V. It took the die area of 5.6 mm2. It showed the good performance that can apply for cooled type high density infrared detector array.