The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] GES(423hit)

61-80hit(423hit)

  • Accuracy Improvement of Estimated Perceived Brightness Maps by Helmholtz-Kohlrausch Effect Using a Correction Coefficient

    Shinichi HASHIMOTO  Takaya SHIZUME  Hiroaki TAKAMATSU  Yoshifumi SHIMODAIRA  Gosuke OHASHI  

     
    PAPER-HUMAN PERCEPTION

      Vol:
    E100-A No:2
      Page(s):
    565-571

    The Helmholtz-Kohlrausch (H-K) effect is a phenomenon in which the perceived brightness levels induced by two stimuli are different even when two color stimuli have the same luminance and different chroma in a particular hue. This phenomenon appears on display devices, and the wider the gamut these devices have, the more the perceived brightness is affected by the H-K effect. The quantification of this effect can be expected to be useful for the development and evaluation of a wide range of display devices. However, quantification of the H-K effect would require considerable subjective evaluation experimentation, which would be a major burden. Therefore, the authors have derived perceived brightness maps for natural images using an estimation equation for the H-K effect without experimentation. The results of comparing and analyzing the calculated maps and ground truth maps obtained through subjective evaluation experiments confirm strong correlation coefficients between such maps overall. However, a tendency for the estimation of the calculation map to be poor on high chroma strongly influenced by the H-K effect was also confirmed. In this study, we propose an accuracy improvement method for the estimation of the H-K effect by correcting the calculation maps using a correction coefficient obtained by focusing on this tendency, and we confirm the effectiveness of our method.

  • Enhancing Entropy Throttling: New Classes of Injection Control in Interconnection Networks

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    PAPER-Interconnection network

      Pubricized:
    2016/08/25
      Vol:
    E99-D No:12
      Page(s):
    2911-2922

    State-of-the-art parallel computers, which are growing in parallelism, require a lot of things in their interconnection networks. Although wide spectrum of efforts in research and development for effective and practical interconnection networks are reported, the problem is still open. One of the largest issues is congestion control that intends to maximize the network performance in terms of throughput and latency. Throttling, or injection limitation, is one of the center ideas of congestion control. We have proposed a new class of throttling method, Entropy Throttling, whose foundation is entropy concept of packets. The throttling method is successful in part, however, its potentials are not sufficiently discussed. This paper aims at exploiting capabilities of the Entropy Throttling method via comprehensive evaluation. Major contributions of this paper are to introduce two ideas of hysteresis function and guard time and also to clarify wide performance characteristics in steady and unsteady communication situations. By introducing the new ideas, we extend the Entropy throttling method. The extended methods improve communication performance at most 3.17 times in the best case and 1.47 times in average compared with non-throttling cases in collective communication, while the method can sustain steady communication performance.

  • Analysis on Buffer Occupancy of Quantized Congestion Notification in Data Center Networks

    Chang RUAN  Jianxin WANG  Jiawei HUANG  Wanchun JIANG  

     
    PAPER-Network

      Pubricized:
    2016/06/01
      Vol:
    E99-B No:11
      Page(s):
    2361-2372

    In data center networks, Quantized Congestion Notification (QCN) has been ratified as the standard congestion management mechanism in the link layer. Since QCN nonlinearly switches between the rate increase and decrease stages, it is very difficult to understand QCN in depth and provide theoretical guidelines on setting the buffer size of the QCN switch. This paper gives an explicit formula for the boundary of buffer occupancy of the QCN switch. Specifically, based on the fluid model of QCN, we first derive the uniformly asymptotic stability condition of the QCN system. Then, under the condition that QCN is uniformly asymptotically stable, we analyze the buffer occupancy of the QCN switch theoretically and show that the classic rule-of-thumb for buffer sizing is not suitable for QCN. Finally, simulations validate the accuracy of our theoretical results.

  • Coordinated Ramp Metering for Minimum Waiting Time and Limited Ramp Storage

    Soobin JEON  Inbum JUNG  

     
    PAPER-Intelligent Transport System

      Vol:
    E99-A No:10
      Page(s):
    1843-1855

    Ramp metering is the most effective and direct method to control a vehicle entering a freeway. This study proposes a novel density-based ramp metering method. Existing methods typically use flow data that has low reliability, and they suffer from various problems. Furthermore, when ramp metering is performed based on freeway congestion, additional congestion and over-capacity can occur in the ramp. To solve these problems faced with existing methods, the proposed method uses the density and acceleration data of vehicles on the freeway and considers the ramp status. The experimental environment was simulated using PTV Corporation's VISSIM simulator. The Traffic Information and Condition Analysis System was developed to control the VISSIM simulator. The experiment was conducted between 2:00 PM and 7:00 PM on October 5, 2014, during severe traffic congestion. The simulation results showed that total travel time was reduced by 10% compared to existing metering system during the peak time. Thus, we solved the problem of ramp congestion and over-capacity.

  • Challenges of Fully Homomorphic Encryptions for the Internet of Things Open Access

    Licheng WANG  Jing LI  Haseeb AHMAD  

     
    INVITED PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    1982-1990

    With the flourish of applications based on the Internet of Things (IoT), privacy issues have been attracting a lot of attentions. Although the concept of privacy homomorphism was proposed along with the birth of the well-known RSA cryptosystems, cryptographers over the world have spent about three decades for finding the first implementation of the so-called fully homomorphic encryption (FHE). Despite of, currently known FHE schemes, including the original Gentry's scheme and many subsequent improvements as well as the other alternatives, are not appropriate for IoT-oriented applications because most of them suffer from the problems of inefficient key size and noisy restraining. In addition, for providing fully support to IoT-oriented applications, symmetric fully homomorphic encryptions are also highly desirable. This survey presents an analysis on the challenges of designing secure and practical FHE for IoT, from the perspectives of lightweight requirements as well as the security requirements. In particular, some issues about designing noise-free FHE schemes would be addressed.

  • Threshold Relaxation and Holding Time Limitation Method for Accepting More General Calls under Emergency Trunk Reservation

    Kazuki TANABE  Sumiko MIYATA  Ken-ichi BABA  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1518-1528

    In emergency situations, telecommunication networks become congested due to large numbers of call requests. Also, some infrastructure breaks down, so undamaged communication resources must be utilized more efficiently. Therefore, several lines in telephone exchanges are generally reserved for emergency calls whose users communicate crucial information. The number of lines reserved for emergency calls is determined by a threshold, on a trunk reservation control method. To accept both required emergency calls and more general calls, the traffic intensity of arriving emergency calls should be estimated in advance, and a threshold should be configured so that the number of reserved lines becomes lower than the estimation. Moreover, we propose that the holding time for general calls should be positively limited. By guaranteeing the holding time sufficient for communicating essential information, holding time limitation reduces long-period calls so more general calls are accepted. In this paper, we propose a new CAC method to utilize undamaged communication resources more efficiently during emergencies. Our proposed method accepts more general calls by collaboratively relaxing the threshold of trunk reservation and limiting holding time of general calls. This method is targeted at not only the telephone exchange but also various systems on networks, e.g. base stations of the wireless network or SIP servers. With our method, the threshold is configured in consideration of the ratio of traffic intensities estimated in advance. We modeled the telephone exchange as a queueing loss system and calculated call-blocking rates of both emergency and general calls by using computer simulation. The comparison with the conventional holding time limitation method showed that our proposed method accepts the required number of emergency calls by appropriately relaxing the threshold, while suppressing the increase in call-blocking of general calls.

  • Fairness Improvement of Multiple-Bottleneck Flow in Data Center Networks

    Kenta MATSUSHIMA  Kouji HIRATA  Miki YAMAMOTO  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1445-1454

    Quantized congestion notification (QCN), discussed in IEEE 802.1Qau, is one of the most promising Layer 2 congestion control methods for data center networks. Because data center networks have fundamentally symmetric structures and links are designed to have high link utilization, data center flows often pass through multiple bottleneck links. QCN reduces its transmission rate in a probabilistic manner with each congestion notification feedback reception, which might cause excessive regulation of the transmission rate in a multiple-bottleneck case because each bottleneck causes congestion feedbacks. We have already proposed QCN with bottleneck selection (QCN/BS) for multicast communications in data center networks. Although QCN/BS was originally proposed for multicast communications, it can also be applied to unicast communications with multiple bottleneck points. QCN/BS calculates the congestion level for each switch based on feedback from the switch and adjusts its transmission rate to the worst congestion level. In this paper, we preliminarily evaluate QCN/BS in unicast communications with multiple tandem bottleneck points. Our preliminary evaluation reveals that QCN/BS can resolve the excessive rate regulation problem of QCN but has new fairness problems for long-hop flows. To resolve this, we propose a new algorithm that integrates QCN/BS and our already proposed Adaptive BC_LIMIT. In Adaptive BC_LIMIT, the opportunities for rate increase are almost the same for all flows even if their transmission rates differ, enabling an accelerated convergence of fair rate allocation among flows sharing a bottleneck link. The integrated algorithm is the first congestion control mechanism that takes into account unicast flows passing through multiple tandem bottleneck points based on QCN. Furthermore, it does not require any modifications of switches used in QCN. Our simulation results show that our proposed integration of QCN/BS and Adaptive BC_LIMIT significantly mitigates the fairness problem for unicast communications with multiple bottleneck points in data center networks.

  • An Efficient Highly Adaptive and Deadlock-Free Routing Algorithm for 3D Network-on-Chip

    Lian ZENG  Tieyuan PAN  Xin JIANG  Takahiro WATANABE  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1334-1344

    As the semiconductor technology continues to develop, hundreds of cores will be deployed on a single die in the future Chip-Multiprocessors (CMPs) design. Three-Dimensional Network-on-Chips (3D NoCs) has become an attractive solution which can provide impressive high performance. An efficient and deadlock-free routing algorithm is a critical to achieve the high performance of network-on-chip. Traditional methods based on deterministic and turn model are deadlock-free, but they are unable to distribute the traffic loads over the network. In this paper, we propose an efficient, adaptive and deadlock-free algorithm (EAR) based on a novel routing selection strategy in 3D NoC, which can distribute the traffic loads not only in intra-layers but also in inter-layers according to congestion information and path diversity. Simulation results show that the proposed method achieves the significant performance improvement compared with others.

  • A Visible Watermarking with Automated Location Technique for Copyright Protection of Portrait Images

    Antonio CEDILLO-HERNANDEZ  Manuel CEDILLO-HERNANDEZ  Francisco GARCIA-UGALDE  Mariko NAKANO-MIYATAKE  Hector PEREZ-MEANA  

     
    PAPER-Information Network

      Pubricized:
    2016/03/10
      Vol:
    E99-D No:6
      Page(s):
    1541-1552

    A visible watermarking technique to provide copyright protection for portrait images is proposed in this paper. The proposal is focused on real-world applications where a portrait image is printed and illegitimately used for commercial purposes. It is well known that this is one of the most difficult challenges to prove ownership through current watermark techniques. We propose an original approach which avoids the deficiencies of typical watermarking methods in practical scenarios by introducing a smart process to automatically detect the most suitable region of the portrait image, where the visible watermark goes unnoticed to the naked eye of a viewer and is robust enough to remain visible when printed. The position of the watermark is determined by performing an analysis of the portrait image characteristics taking into account several conditions of their spatial information together with human visual system properties. Once the location is set, the watermark embedding process is performed adaptively by creating a contrast effect between the watermark and its background. Several experiments are performed to illustrate the proper functioning of the proposed watermark algorithm on portrait images with different characteristics, including dimensions, backgrounds, illumination and texture, with the conclusion that it can be applied in many practical situations.

  • Real-Time Streaming Data Delivery over Named Data Networking Open Access

    Peter GUSEV  Zhehao WANG  Jeff BURKE  Lixia ZHANG  Takahiro YONEDA  Ryota OHNISHI  Eiichi MURAMOTO  

     
    INVITED PAPER

      Vol:
    E99-B No:5
      Page(s):
    974-991

    Named Data Networking (NDN) is a proposed future Internet architecture that shifts the fundamental abstraction of the network from host-to-host communication to request-response for named, signed data-an information dissemination focused approach. This paper describes a general design for receiver-driven, real-time streaming data (RTSD) applications over the current NDN implementation that aims to take advantage of the architecture's unique affordances. It is based on experimental development and testing of running code for real-time video conferencing, a positional tracking system for interactive multimedia, and a distributed control system for live performance. The design includes initial approaches to minimizing latency, managing buffer size and Interest retransmission, and adapting retrieval to maximize bandwidth and control congestion. Initial implementations of these approaches are evaluated for functionality and performance results, and the potential for future research in this area, and improved performance as new features of the architecture become available, is discussed.

  • Slicing Fine-Grained Code Change History

    Katsuhisa MARUYAMA  Takayuki OMORI  Shinpei HAYASHI  

     
    PAPER-Software Engineering

      Pubricized:
    2015/12/21
      Vol:
    E99-D No:3
      Page(s):
    671-687

    Change-aware development environments can automatically record fine-grained code changes on a program and allow programmers to replay the recorded changes in chronological order. However, since they do not always need to replay all the code changes to investigate how a particular entity of the program has been changed, they often eliminate several code changes of no interest by manually skipping them in replaying. This skipping action is an obstacle that makes many programmers hesitate when they use existing replaying tools. This paper proposes a slicing mechanism that automatically removes manually skipped code changes from the whole history of past code changes and extracts only those necessary to build a particular class member of a Java program. In this mechanism, fine-grained code changes are represented by edit operations recorded on the source code of a program and dependencies among edit operations are formalized. The paper also presents a running tool that slices the operation history and replays its resulting slices. With this tool, programmers can avoid replaying nonessential edit operations for the construction of class members that they want to understand. Experimental results show that the tool offered improvements over conventional replaying tools with respect to the reduction of the number of edit operations needed to be examined and over history filtering tools with respect to the accuracy of edit operations to be replayed.

  • Proof Test of Chaos-Based Hierarchical Network Control Using Packet-Level Network Simulation

    Yusuke SAKUMOTO  Chisa TAKANO  Masaki AIDA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E99-B No:2
      Page(s):
    402-411

    Computer networks require sophisticated control mechanisms to realize fair resource allocation among users in conjunction with efficient resource usage. To successfully realize fair resource allocation in a network, someone should control the behavior of each user by considering fairness. To provide efficient resource utilization, someone should control the behavior of all users by considering efficiency. To realize both control goals with different granularities at the same time, a hierarchical network control mechanism that combines microscopic control (i.e., fairness control) and macroscopic control (i.e., efficiency control) is required. In previous works, Aida proposed the concept of chaos-based hierarchical network control. Next, as an application of the chaos-based concept, Aida designed a fundamental framework of hierarchical transmission rate control based on the chaos of coupled relaxation oscillators. To clarify the realization of the chaos-based concept, one should specify the chaos-based hierarchical transmission rate control in enough detail to work in an actual network, and confirm that it works as intended. In this study, we implement the chaos-based hierarchical transmission rate control in a popular network simulator, ns-2, and confirm its operation through our experimentation. Results verify that the chaos-based concept can be successfully realized in TCP/IP networks.

  • Weight Optimization for Multiple Image Integration and Its Applications

    Ryo MATSUOKA  Tomohiro YAMAUCHI  Tatsuya BABA  Masahiro OKUDA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/10/06
      Vol:
    E99-D No:1
      Page(s):
    228-235

    We propose an image restoration technique that uses multiple image integration. The detail of the dark area when acquiring a dark scene is often deteriorated by sensor noise. Simple image integration inherently has the capability of reducing random noises, but it is especially insufficient in scenes that have a dark area. We introduce a novel image integration technique that optimizes the weights for the integration. We find the optimal weight map by solving a convex optimization problem for the weight optimization. Additionally, we apply the proposed weight optimization scheme to a single-image super-resolution problem, where we slightly modify the weight optimization problem to estimate the high-resolution image from a single low-resolution one. We use some of our experimental results to show that the weight optimization significantly improves the denoising and super-resolution performances.

  • Register-Based Process Virtual Machine Acceleration Using Hardware Extension with Hybrid Execution

    Surachai THONGKAEW  Tsuyoshi ISSHIKI  Dongju LI  Hiroaki KUNIEDA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2505-2518

    The Process Virtual Machine (VM) is typical software that runs applications inside operating systems. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware, operating system and allows bytecodes (portable code) to be executed in the same way on any other platforms. The Process VMs are implemented using an interpreter to interpret bytecode instead of direct execution of host machine codes. Thus, the bytecode execution is slower than those of the compiled programming language execution. Several techniques including our previous paper, the “Fetch/Decode Hardware Extension”, have been proposed to speed up the interpretation of Process VMs. In this paper, we propose an additional methodology, the “Hardware Extension with Hybrid Execution” to further enhance the performance of Process VMs interpretation and focus on Register-based model. This new technique provides an additional decoder which can classify bytecodes into either simple or complex instructions. With “Hybrid Execution”, the simple instruction will be directly executed on hardware of native processor. The complex instruction will be emulated by the “extra optimized bytecode software handler” of native processor. In order to eliminate the overheads of retrieving and storing operand on memory, we utilize the physical registers instead of (low address) virtual registers. Moreover, the combination of 3 techniques: Delay scheduling, Mode predictor HW and Branch/goto controller can eliminate all of the switching mode overheads between native mode and bytecode mode. The experimental results show the improvements of execution speed on the Arithmetic instructions, loop & conditional instructions and method invocation & return instructions can be achieved up to 16.9x, 16.1x and 3.1x respectively. The approximate size of the proposed hardware extension is 0.04mm2 (or equivalent to 14.81k gates) and consumes an additional power of only 0.24mW. The stated results are obtained from logic synthesis using the TSMC 90nm technology @ 200MHz.

  • High-Speed and Local-Changes Invariant Image Matching

    Chao ZHANG  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/08/03
      Vol:
    E98-D No:11
      Page(s):
    1958-1966

    In recent years, many variants of key point based image descriptors have been designed for the image matching, and they have achieved remarkable performances. However, to some images, local features appear to be inapplicable. Since theses images usually have many local changes around key points compared with a normal image, we define this special image category as the image with local changes (IL). An IL pair (ILP) refers to an image pair which contains a normal image and its IL. ILP usually loses local visual similarities between two images while still holding global visual similarity. When an IL is given as a query image, the purpose of this work is to match the corresponding ILP in a large scale image set. As a solution, we use a compressed HOG feature descriptor to extract global visual similarity. For the nearest neighbor search problem, we propose random projection indexed KD-tree forests (rKDFs) to match ILP efficiently instead of exhaustive linear search. rKDFs is built with large scale low-dimensional KD-trees. Each KD-tree is built in a random projection indexed subspace and contributes to the final result equally through a voting mechanism. We evaluated our method by a benchmark which contains 35,000 candidate images and 5,000 query images. The results show that our method is efficient for solving local-changes invariant image matching problems.

  • Statistics on Temporal Changes of Sparse Coding Coefficients in Spatial Pyramids for Human Action Recognition

    Yang LI  Junyong YE  Tongqing WANG  Shijian HUANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/06/01
      Vol:
    E98-D No:9
      Page(s):
    1711-1714

    Traditional sparse representation-based methods for human action recognition usually pool over the entire video to form the final feature representation, neglecting any spatio-temporal information of features. To employ spatio-temporal information, we present a novel histogram representation obtained by statistics on temporal changes of sparse coding coefficients frame by frame in the spatial pyramids constructed from videos. The histograms are further fed into a support vector machine with a spatial pyramid matching kernel for final action classification. We validate our method on two benchmarks, KTH and UCF Sports, and experiment results show the effectiveness of our method in human action recognition.

  • Effect of Load-Balancing against Disaster Congestion with Actual Subscriber Extension Telephone Numbers

    Daisuke SATOH  Hiromichi KAWANO  Yoshiyuki CHIBA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1637-1646

    We demonstrated that load balancing using actual subscriber extension numbers was practical and effective against traffic congestion after a disaster based on actual data. We investigated the ratios of the same subscriber extension numbers in each prefecture and found that most of them were located almost evenly all over the country without being concentrated in a particular area. The ratio of every number except for the fourth-last digit in the last group of four numbers in a telephone number was used almost equally and located almost evenly all over the country. Tolerance against overload in the last, second-, and third-last single digits stays close to that in the ideal situation if we assume that each session initiation protocol server has a capacity in accordance with the ratio of each number on every single digit in the last group of four numbers in Japan. Although tolerance against overload in double-, triple-, and quadruple-digit numbers does not stay close to that in the ideal situation, it still remains sufficiently high in the case of double- and triple-digit numbers. Although tolerance against overload in the quadruple-digit numbers becomes low, disaster congestion is still not likely to occur in almost half of the area of Japan (23 out of 47 prefectures).

  • One-Step Error Detection and Correction Approach for Voice Word Processor

    Junhwi CHOI  Seonghan RYU  Kyusong LEE  Gary Geunbae LEE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/05/20
      Vol:
    E98-D No:8
      Page(s):
    1517-1525

    We propose a one-step error detection and correction interface for a voice word processor. This correction interface performs analysis region detection, user intention understanding and error correction utterance recognition, all from a single user utterance input. We evaluate the performance of each component first, and then compare the effectiveness of our interface to two previous interfaces. Our evaluation demonstrates that each component is technically superior to the baselines and that our one-step error detection and correction method yields an error correction interface that is more convenient and natural than the two previous interfaces.

  • ROI-Based Reversible Data Hiding Scheme for Medical Images with Tamper Detection

    Yuling LIU  Xinxin QU  Guojiang XIN  Peng LIU  

     
    PAPER-Data Hiding

      Pubricized:
    2014/12/04
      Vol:
    E98-D No:4
      Page(s):
    769-774

    A novel ROI-based reversible data hiding scheme is proposed for medical images, which is able to hide electronic patient record (EPR) and protect the region of interest (ROI) with tamper localization and recovery. The proposed scheme combines prediction error expansion with the sorting technique for embedding EPR into ROI, and the recovery information is embedded into the region of non-interest (RONI) using histogram shifting (HS) method which hardly leads to the overflow and underflow problems. The experimental results show that the proposed scheme not only can embed a large amount of information with low distortion, but also can localize and recover the tampered area inside ROI.

  • QCN/DC: Quantized Congestion Notification with Delay-Based Congestion Detection in Data Center Networks

    Kenta MATSUSHIMA  Yuki TANISAWA  Miki YAMAMOTO  

     
    PAPER-Network System

      Vol:
    E98-B No:4
      Page(s):
    585-595

    Data center network is composed of high-speed Ethernet extended in a limited area of a data center building, so its RTT is extremely small of µsec order. In order to regulate data center network delay large part of which is queuing delay, QCN is proposed for layer 2 congestion control in IEEE 802.1Qau. QCN controls transmission rate of the sender by congestion feedback from a congested switch. QCN adopts probabilistic feedback transmission to reduce the control overhead. When the number of flows through a bottleneck link increases, some flows might receive no feedback even in congestion phase due to probabilistic feedback transmission. In this situation, queue length might be significantly fluctuated. In this paper, we propose a new delay-based congestion detection and control method. Our proposed delay-based congestion control is cooperated with the conventional QCN so as to detect and react congestion not detected by QCN.

61-80hit(423hit)