The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1801-1820hit(8249hit)

  • Adaptively and Unconditionally Secure Conversion Protocols between Ramp and Linear Secret Sharing

    Ryo KIKUCHI  Dai IKARASHI  Koki HAMADA  Koji CHIDA  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    223-231

    Secret sharing (SS) has been extensively studied as for both secure data storage and a fundamental building block for multiparty computation (MPC). Recently, Kikuchi et al. proposed a passively and unconditionally secure conversion protocol that converts from a share of a ramp scheme to another of homomorphic SS scheme. The share-size of the ramp scheme is small, and the homomorphic SS scheme is a class of SS schemes that includes Shamir's and replicated SS schemes, which are convenient for MPC. Therefore, their protocol is a conversion from an SS scheme whose share-size is small to MPC-friendly SS schemes, and can be applied to reduce the amount of data storage while maintaining extendibility to MPC. We propose five unconditionally and actively secure protocols in the honest majority. In this paper, we consider a privacy and correctness as security requirement and does not consider a robustness: A cheat caused by an active adversary must be detected. These protocols consist of two conversion protocols, two reveal protocols and a protocol generating specific randomness. Main protocols among them are two conversion protocols for bilateral conversion between a ramp scheme and linear SS scheme, and the others are building blocks of the main protocols. Linear SS scheme is a subset of homomorphic SS scheme but includes both Shamir's and replicated SS schemes. Therefore, these main protocols are conversions between an SS scheme whose share-size is small to MPC-friendly SS schemes. These main protocols are unconditionally and actively secure so if MPC protocols used after the conversion are actively secure, the whole system involving SS scheme, conversion, and MPC protocols can be unconditionally and actively secure by using our main protocols. One of our two main protocols is the first to convert from MPC-friendly SS schemes to the ramp scheme. This enhances applications, such as secure backup, of the conversion protocol. Other than the two main protocols, we propose a protocol for generating specific randomnesses and two reveal protocols as building blocks. The latter two reveal protocols are actively and unconditionally secure in the honest majority and requires O(n||F||)-bit communication per revealing, and we believe that it is independently interest.

  • Collaborative Spectrum Sensing via L1/2 Regularization

    Zhe LIU  Feng LI  WenLei DUAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:1
      Page(s):
    445-449

    This letter studies the problem of cooperative spectrum sensing in wideband cognitive radio networks. Based on the basis expansion model (BEM), the problem of estimation of power spectral density (PSD) is transformed to estimation of BEM coefficients. The sparsity both in frequency domain and space domain is used to construct a sparse estimation structure. The theory of L1/2 regularization is used to solve the compressed sensing problem. Simulation results demonstrate the effectiveness of the proposed method.

  • Disaster Recovery for Transport Network through Multiple Restoration Stages

    Shohei KAMAMURA  Daisaku SHIMAZAKI  Kouichi GENDA  Koji SASAYAMA  Yoshihiko UEMATSU  

     
    PAPER-Network System

      Vol:
    E98-B No:1
      Page(s):
    171-179

    This paper proposes a disaster recovery method for transport networks. In a scenario of recovery from a disaster, a network is repaired through multiple restoration stages because repair resources are limited. In a practical case, a network should provide the reachability of important traffic in transient stages, even as service interruption risks and/or operational overheads caused by transport paths switching are suppressed. Then, we define the multi-objective optimization problem: maximizing the traffic recovery ratio and minimizing the number of switched transport paths at each stage. We formulate our problem as linear programming, and show that it yields pareto-optimal solutions of traffic recovery versus the number of switched paths. We also propose a heuristic algorithm for applying to networks consisting of a few hundred nodes, and show that it can produce sub-optimal solutions that differ only slightly from optimal solutions.

  • A Strengthened Security Notion for Password-Protected Secret Sharing Schemes

    Shingo HASEGAWA  Shuji ISOBE  Jun-ya IWAZAKI  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    203-212

    Password-protected secret sharing (PPSS, for short) schemes were proposed by Bagherzandi, Jarecki, Saxena and Lu. In this paper, we consider another attack for PPSS schemes which is based on public parameters and documents. We show that the protocol proposed by Bagherzandi et al. is broken with the attack. We then propose an enhanced protocol which is secure against the attack.

  • Fast Feature Matching by Coarse-to-Fine Comparison of Rearranged SURF Descriptors

    Hanhoon PARK  Kwang-Seok MOON  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/10/03
      Vol:
    E98-D No:1
      Page(s):
    210-213

    Speeded up robust features (SURF) can detect/describe scale- and rotation-invariant features at high speed by relying on integral images for image convolutions. However, the time taken for matching SURF descriptors is still long, and this has been an obstacle for use in real-time applications. In addition, the matching time further increases in proportion to the number of features and the dimensionality of the descriptor. Therefore, we propose a fast matching method that rearranges the elements of SURF descriptors based on their entropies, divides SURF descriptors into sub-descriptors, and sequentially and analytically matches them to each other. Our results show that the matching time could be reduced by about 75% at the expense of a small drop in accuracy.

  • Algorithm for the Length-Constrained Maximum-Density Path Problem in a Tree with Uniform Edge Lengths

    Sung Kwon KIM  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E98-D No:1
      Page(s):
    103-107

    Given an edge-weighted tree with n vertices and a positive integer L, the length-constrained maximum-density path problem is to find a path of length at least L with maximum density in the tree. The density of a path is the sum of the weights of the edges in the path divided by the number of edges in the path. We present an O(n) time algorithm for the problem. The previously known algorithms run in O(nL) or O(n log n) time.

  • Positioning Method by Two GNSS Satellites and Distance Sensor in Urban Area

    Hiroyuki HATANO  Tomoya KITANI  Masahiro FUJII  Atsushi ITO  Yu WATANABE  Hironobu ONISHI  Toru AOKI  

     
    PAPER

      Vol:
    E98-A No:1
      Page(s):
    275-283

    For estimating user's location, Global Navigation Satellite System (GNSS) is very useful. Especially, Global Positioning System (GPS) by USA is very popular. A GPS receiver needs multiple satellites (usually 4 and more satellites). Propagation to the satellites needs line-of-sight. However, in urban area, there are many buildings. Received signals tend to become bad quality. Such signals are often called as non-line-of-sight (NLOS) or multipath signals. The problem is that the receiver cannot get line-of-sight signals from adequate number of the satellites coinstantaneously. This case leads to degradation of estimation quality or impossibility of estimation. In this paper, we will introduce a novel estimation algorithm, which can estimate own position with as low number of satellites as possible. The proposal achieves the estimation by only two satellites. The proposal also uses a traveling distance sensor which is often equipped on vehicles. By recorded satellite data, we will confirm our effectiveness.

  • Generalization to Any Field of Toeplitz Matrix Vector Product Based on Multi-Way Splitting Method and Its Application

    Sun-Mi PARK  Ku-Young CHANG  Dowon HONG  Changho SEO  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E98-A No:1
      Page(s):
    378-383

    In several important applications, we often encounter with the computation of a Toeplitz matrix vector product (TMVP). In this work, we propose a k-way splitting method for a TMVP over any field F, which is a generalization of that over GF(2) presented by Hasan and Negre. Furthermore, as an application of the TMVP method over F, we present the first subquadratic space complexity multiplier over any finite field GF(pn) defined by an irreducible trinomial.

  • Bitwise Partial-Sum: A New Tool for Integral Analysis against ARX Designs

    Yu SASAKI  Lei WANG  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E98-A No:1
      Page(s):
    49-60

    In this paper, we present a new cryptanalytic tool that can reduce the complexity of integral analysis against Addition-Rotation-XOR (ARX) based designs. Our technique is based on the partial-sum technique proposed by Ferguson et al. at FSE 2000, which guesses subkeys byte to byte in turn, and the data to be analyzed is compressed for each key guess. In this paper, the technique is extended to ARX based designs. Subkeys are guessed bit by bit, and the data is compressed with respect to the value of the guessed bit position and carry values to the next bit position. We call the technique bitwise partial-sum. We demonstrate this technique by applying it to reduced-round versions of HIGHT, which is one of the ISO standard 64-bit block ciphers. Another contribution of this paper is an independent improvement specific to HIGHT. By exploiting linear computations inside the round function, the number of guessed bits during the key recovery phase can be greatly reduced. Together with the bitwise partial-sum, the integral analysis on HIGHT is extended from previous 22 rounds to 26 rounds, while full HIGHT consists of 32 rounds.

  • An Optimal Design of MIMO Full-Duplex Relay with Spatial-Domain Self-Interference Nulling Scheme

    Byungjin CHUN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:1
      Page(s):
    260-266

    An optimal design method of linear processors intended for a multi-input multi-output (MIMO) full-duplex (FD) amplify-and-forward (AF) relay network is presented under the condition of spatial-domain self-interference nulling. This method is designed to suit the availability of channel state information (CSI). If full CSI of source station (SS)-relay station (RS), RS-RS (self-interference channel), and RS-destination station (DS) links are available, the instantaneous end-to-end capacity is maximized. Otherwise, if CSI of the RS-DS link is either partially available (only covariance is known), or not available, while CSI of the other links is known, then the ergodic end-to-end capacity is maximized. Performance of the proposed FD-AF relay system is demonstrated through computer simulations, especially under various correlation conditions of the RS-DS link.

  • The Challenge of Collaboration among Academies and Asia Pacific for ITS R&D

    Hiroshi MAKINO  Shunsuke KAMIJO  

     
    INVITED PAPER

      Vol:
    E98-A No:1
      Page(s):
    259-266

    ITS R&D includes wide variety of research area such as mechanical engineering, road engineering, traffic engineering, information and communication engineering, and electrical engineering. In spite of initiatives across the variety of engineering is essential to solve the problems of practical social systems, it is difficult to collaborate among engineering. Based on the joint research of the Japan Society of Civil Engineers and the Institute of Electrical Engineers held at the Great East Japan Earthquake, this paper discusses about necessity of collaboration among academies on ITS R&D. International collaboration is also important for ITS R&D. Asian countries could share the same problems and solutions, since many of mega cities exist in Asia region and they suffers from heavy traffics. Therefore, we need to discuss the common solution to our problems.

  • A Fixed-Parameter Algorithm for Detecting a Singleton Attractor in an AND/OR Boolean Network with Bounded Treewidth

    Chia-Jung CHANG  Takeyuki TAMURA  Kun-Mao CHAO  Tatsuya AKUTSU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E98-A No:1
      Page(s):
    384-390

    The Boolean network can be used as a mathematical model for gene regulatory networks. An attractor, which is a state of a Boolean network repeating itself periodically, can represent a stable stage of a gene regulatory network. It is known that the problem of finding an attractor of the shortest period is NP-hard. In this article, we give a fixed-parameter algorithm for detecting a singleton attractor (SA) for a Boolean network that has only AND and OR Boolean functions of literals and has bounded treewidth k. The algorithm is further extended to detect an SA for a constant-depth nested canalyzing Boolean network with bounded treewidth. We also prove the fixed-parameter intractability of the detection of an SA for a general Boolean network with bounded treewidth.

  • Quality of Experience Study on Dynamic Adaptive Streaming Based on HTTP

    Yun SHEN  Yitong LIU  Hongwen YANG  Dacheng YANG  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    62-70

    In this paper, the Quality of Experience (QoE) on Dynamic Adaptive Streaming based on HTTP (DASH) is researched. To study users' experience on DASH, extensive subjective tests are firstly designed and conducted, based on which, we research QoE enhancement in DASH and find that DASH ensures more fluent playback (less stall) than constant bitrate (CBR) streaming to promote users' satisfaction especially in mobile networks. Then we adopt two-way analysis of variance (ANOVA) tests in statistics to identify the effect of specific factors (segment bitrate, bitrate fluctuation pattern, and bitrate switching) that impair users' experience on DASH. The impairment functions are then derived for these influence factors based on the Primacy and Recency Effect, a psychological phenomenon that has been proved to exist in users' experience on DASH in this paper. And the final QoE evaluation model is proposed to provide high correlation assessment for QoE of DASH. The good performance of our QoE model is validated by the subjective tests. In addition, our QoE study on DASH is also applied for QoE management to propose a QoE-based bitrate adaptation strategy, which promotes users' experience on DASH more strongly than the strategy based on QoS.

  • Brain-Inspired Communication Technologies: Information Networks with Continuing Internal Dynamics and Fluctuation Open Access

    Jun-nosuke TERAMAE  Naoki WAKAMIYA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    153-159

    Computation in the brain is realized in complicated, heterogeneous, and extremely large-scale network of neurons. About a hundred billion neurons communicate with each other by action potentials called “spike firings” that are delivered to thousands of other neurons from each. Repeated integration and networking of these spike trains in the network finally form the substance of our cognition, perception, planning, and motor control. Beyond conventional views of neural network mechanisms, recent rapid advances in both experimental and theoretical neuroscience unveil that the brain is a dynamical system to actively treat environmental information rather passively process it. The brain utilizes internal dynamics to realize our resilient and efficient perception and behavior. In this paper, by considering similarities and differences of the brain and information networks, we discuss a possibility of information networks with brain-like continuing internal dynamics. We expect that the proposed networks efficiently realize context-dependent in-network processing. By introducing recent findings of neuroscience about dynamics of the brain, we argue validity and clues for implementation of the proposal.

  • A QoS-Aware Dual Crosspoint Queued Switch with Largest Weighted Occupancy First Scheduling Algorithm

    Gordana GARDASEVIC  Soko DIVANOVIC  Milutin RADONJIC  Igor RADUSINOVIC  

     
    PAPER-Network

      Vol:
    E98-B No:1
      Page(s):
    201-208

    Support of incoming traffic differentiation and Quality of Service (QoS) assurance is very important for the development of high performance packet switches, capable of separating traffic flows. In our previous paper, we proposed the implementation of two buffers at each crosspoint of a crossbar fabric that leads to the Dual Crosspoint Queued (DCQ) switch. Inside DCQ switch, one buffer is used to store the real-time traffic and the other for the non-real-time traffic. We also showed that the static priority algorithms can provide the QoS only for the real-time traffic due to their greedy nature that gives the absolute priority to that type of traffic. In order to overcome this problem, in our paper we propose the DCQ switch with the Largest Weighted Occupancy First scheduling algorithm that provides the desired QoS support for both traffic flows. Detailed analysis of the simulation results confirms the validity of proposed solution.

  • Real-Time Touch Controller with High-Speed Touch Accelerator for Large-Sized Touch Screens

    SangHyuck BAE  DoYoung JUNG  CheolSe KIM  KyoungMoon LIM  Yong-Surk LEE  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2014/10/17
      Vol:
    E98-D No:1
      Page(s):
    193-196

    For a large-sized touch screen, we designed and evaluated a real-time touch microarchitecture using a field-programmable gate array (FPGA). A high-speed hardware accelerator based on a parallel touch algorithm is suggested and implemented in this letter. The touch controller also has a timing control unit and an analog digital convert (ADC) control unit for analog touch sensing circuits. Measurement results of processing time showed that the touch controller with its proposed microarchitecture is five times faster than the 32-bit reduced instruction set computer (RISC) processor without the touch accelerator.

  • Object Extraction Using an Edge-Based Feature for Query-by-Sketch Image Retrieval

    Takuya TAKASU  Yoshiki KUMAGAI  Gosuke OHASHI  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/10/15
      Vol:
    E98-D No:1
      Page(s):
    214-217

    We previously proposed a query-by-sketch image retrieval system that uses an edge relation histogram (ERH). However, it is difficult for this method to retrieve partial objects from an image, because the ERH is a feature of the entire image, not of each object. Therefore, we propose an object-extraction method that uses edge-based features in order to enable the query-by-sketch system to retrieve partial images. This method is applied to 20,000 images from the Corel Photo Gallery. We confirm that retrieval accuracy is improved by using the edge-based features for extracting objects, enabling the query-by-sketch system to retrieve partial images.

  • A Design Strategy of Error-Prediction Low-Density Parity-Check (EP-LDPC) Error-Correcting Code (ECC) and Error-Recovery Schemes for Scaled NAND Flash Memories

    Shuhei TANAKAMARU  Masafumi DOI  Ken TAKEUCHI  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:1
      Page(s):
    53-61

    A design strategy (the required ECC strength and the judgment method of the dominant error mode) of error-prediction low-density parity-check (EP-LDPC) error-correcting code (ECC) and error-recovery schemes for scaled NAND flash memories is discussed in this paper. The reliability characteristics of NAND flash memories are investigated with 1X, 2X and 3Xnm NAND flash memories. Moreover, the system-level reliability of SSDs is analyzed from the acceptable data-retention time of the SSD. The reliability of the NAND flash memory is continuously degrading as the design rule shrinks due to various problems. As a result, future SSDs will not be able to maintain system-level reliability unless advanced ECCs with signal processing are adopted. Therefore, EP-LDPC and error-recovery (ER) schemes are previously proposed to improve the reliability. The reliability characteristics such as the bit-error rate (BER) versus the data-retention time and the effect of the cell-to-cell interference on the BER are measured. These reliability characteristics obtained in this paper are stored in an SSD as a reliability table, which plays a principal role in EP-LDPC scheme. The effectiveness of the EP-LDPC scheme with the scaling of the NAND flash memory is also discussed by analyzing the cell-to-cell interference. An interference factor $alpha$ is proposed to discuss the impact of the cell-to-cell coupling. As a result, the EP-LDPC scheme is assumed to be effective down to 1Xnm NAND flash memory. On the other hand, the ER scheme applies different voltage pulses to memory cells, according to the dominant error mode: program-disturb or data-retention error dominant mode. This paper examines when the error mode changes, corresponding to which pulse should be applied. Additionally, the estimation methods of the dominant error mode by ER scheme are also discussed. Finally, as a result of the system-level reliability analysis, it is concluded that the use of the EP-LDPC scheme can maintain the reliability of the NAND flash memory in 1Xnm technology node.

  • Secret Sharing with Share-Conversion: Achieving Small Share-Size and Extendibility to Multiparty Computation

    Ryo KIKUCHI  Koji CHIDA  Dai IKARASHI  Wakaha OGATA  Koki HAMADA  Katsumi TAKAHASHI  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    213-222

    Secret sharing scheme (SS) has been extensively studied since SSs are important not only for secure data storage but also as a fundamental building block for multiparty computation (MPC). For an application to secure data storage, the share size of SS is an important factor. For an application to a building block for MPC, the extendibility to MPC is needed. Computationally secure SSs and a ramp scheme have a small share size but there have been few studies concerning their MPC. In contrast, there have been many studies about MPC on Shamir's and replicated SSs while their share size is large. We consider an application scenario of SS such as applying SSs to secure data storage service with MPC. In this application, users store their data in servers through SS, and sometimes the servers perform MPC as an optional feature. In this case, the extendibility to MPC is needed and good code-efficiency is preferable. We propose a new computational SS, and show how to convert shares of our SS and a ramp SS to those of multiparty-friendly SS such as Shamir's and replicated SS. This enables one to secretly-share data compactly and extend secretly-shared data to MPC if needed.

  • Design of Circularly Polarized and Electrically Small Antenna with Omnidirectional Radiation Pattern

    Kittima LERTSAKWIMARN  Chuwong PHONGCHAROENPANICH  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:12
      Page(s):
    2739-2746

    This paper presents an electrically small and circularly polarized antenna with an omnidirectional radiation pattern. The antenna consists of a horizontal loop element enclosed by two U-shaped elements and a vertical element from the feeding point. The radiation pattern of the circular polarization is omnidirectional and has a maximum gain of -2dBic in parallel to the ground plane at the 900MHz band. The antenna dimensions are 48 × 20 × 13.8mm (0.14λ × 0.06λ × 0.04λ) with ka =0.476 (i.e. < 0.5), where k is the wavenumber at the resonant frequency and a is the radius of a sphere surrounding the antenna. The dimension corresponds to the definition of an electrically small antenna. The omnidirectional circularly polarized pattern of a prototype antenna shows good agreement with that of the simulation. In addition, this paper introduces a mechanism that generates omnidirectional circular polarization from electrically small antennas.

1801-1820hit(8249hit)