The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

3741-3760hit(6809hit)

  • High-Speed Calculation of Worst-Case Link Delays in the EDD Connection Admission Control Scheme

    Tokumi YOKOHIRA  Kiyohiko OKAYAMA  

     
    PAPER-Network

      Vol:
    E89-B No:7
      Page(s):
    2012-2022

    The EDD connection admission control scheme has been proposed for supporting real-time communication in packet-switched networks. In the scheme, when a connection establishment request occurs, the worst-case link delay in each link along the connection is calculated to determine whether the request can be accepted or not. In order to calculate the worst-case link delay, we must perform a check called the point schedulability check for each of some discrete time instants (checkpoints). Therefore when there are many checkpoints, the worst-case link delay calculation is time-consuming. We have proposed a high-speed calculation method. The method finds some checkpoints for which the point schedulability check need not be performed and removes such unnecessary checkpoints in advance before a connection establishment request occurs, and the check is performed for each of the remaining checkpoints after the request occurs. However, the method is not so effective under the situation that the maximum packet length in networks is large, because the method can find few unnecessary checkpoints under the situation. This paper proposes a new high-speed calculation method. We relax the condition which determines whether or not the point schedulability check need not be performed for each checkpoint in our previous method and derive a new condition for finding unnecessary checkpoints. Using the proposed method based on the new condition, we can increase the number of unnecessary checkpoints compared to our previous method. Numerical examples which are obtained by extensive simulation show that the proposed method can attain as much as about 50 times speedup.

  • Iterative QRM-MLD with Pilot-Assisted Decision Directed Channel Estimation for OFDM MIMO Multiplexing

    Koichi ADACHI  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1892-1902

    Multiple-input multiple-output (MIMO) multiplexing has recently been attracting considerable attention for increasing the transmission rate in a limited bandwidth. In MIMO multiplexing, the signals transmitted simultaneously from different transmit antennas must be separated and detected at a receiver. Maximum likelihood detection with QR-decomposition and M-algorithm (QRM-MLD) can achieve good performance while keeping computational complexity low. However, when the number of surviving symbol replica candidates in the M-algorithm is set to be small, the performance of QRM-MLD degrades compared to that of MLD because of wrong selection of surviving symbol replica candidates. Furthermore, when channel estimation is inaccurate, accurate signal ranking and QR-decomposition cannot be carried out. In this paper, we propose an iterative QRM-MLD with decision directed channel estimation to improve the packet error rate (PER) performance. In the proposed QRM-MLD, decision feedback data symbols are also used for channel estimation in addition to pilot symbols in order to improve the channel estimation accuracy. Signal detection/channel estimation are then carried out in an iterative fashion. Computer simulation results show that the proposed QRM-MLD reduces the required average received Eb/N0 for PER of 10-2 by about 1.2 dB compared to the conventional method using orthogonal pilot symbols only.

  • Adaptive Morse Code Recognition Using Support Vector Machines for Persons with Physical Disabilities

    Cheng-Hong YANG  Li-Yeh CHUANG  Cheng-Huei YANG  Ching-Hsing LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:7
      Page(s):
    1995-2002

    In this paper, Morse code is selected as a communication adaptive device for persons whose hand coordination and dexterity are impaired by such ailments as amyotrophic lateral sclerosis, multiple sclerosis, muscular dystrophy, and other severe handicaps. Morse code is composed of a series of dots, dashes, and space intervals, and each element is transmitted by sending a signal for a defined length of time. A suitable adaptive automatic recognition method is needed for persons with disabilities due to their difficulty in maintaining a stable typing rate. To overcome this problem, the proposed method combines the support vector machines method with a variable degree variable step size LMS algorithm. The method is divided into five stages: tone recognition, space recognition, training process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods from the literature.

  • A Family of Binary Sequences with 4-Valued Optimal Out-of-Phase Correlation and Large Linear Span

    Xiangyong ZENG  Lei HU  Wenfeng JIANG  

     
    PAPER-Information Theory

      Vol:
    E89-A No:7
      Page(s):
    2029-2035

    In this paper, a new family S(r) of 2n binary sequences of period 2n-1 is proposed, where n ≡ 2 mod 4 and gcd(r, 2n/2-1)=1. The presented family takes 4-valued out-of-phase auto- and cross-correlation values -1, 2n/2-1, and 2n/2+1-1, and its correlation distribution is determined. For r=2(n-2)/4-1, each sequence in S(r), except the unique ideal autocorrelation sequence in the family, is proved to have a large linear span n2n/2-2, whilst the linear span of the latter is n2(n-2)/4-1.

  • An Effective DDoS Attack Detection and Packet-Filtering Scheme

    Seokbong JEONG  Hyunwoo KIM  Sehun KIM  

     
    PAPER-Network Management/Operation

      Vol:
    E89-B No:7
      Page(s):
    2033-2042

    A distributed denial-of-service (DDoS) attack presents a very serious threat to the stability of the Internet. In a typical DDoS attack, a large number of compromised hosts are amassed to send useless packets to jam a victim or its Internet connection, or both. Defense against DDoS attacks as well as identification of their sources comprise demanding challenges in the realm of Internet security studies. In this paper, effective measures are proposed for detecting attacks in routers through the use of queuing models, which help detect attacks closer to the attack sources. Utilizing these measures, an effective DDoS attack detection and packet-filtering scheme is proposed. The suggested approach is a cooperative technique among routers intended to protect the network from persistent and severe congestion arising from a rapid increase in attack traffic. Through computer simulations, it is shown that the proposed scheme can trace attacks near to the attack sources, and can effectively filter attack packets.

  • Hot-Electron Transport and Noise in GaN Two-Dimensional Channels for HEMTs

    Arvydas MATULIONIS  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    913-920

    Accumulation of non-equilibrium longitudinal optical (LO) phonons (termed hot phonons) is considered as a possible cause for limitation of frequency of operation of GaN-based high-electron-mobility transistors (HEMTs). The experimental data on noise temperature of hot electrons at a microwave frequency as a function of supplied electric power is used to extract information on hot phonons: the hot-phonon lifetime, the equivalent hot-phonon temperature, the effective occupancy of hot-phonon states involved into electron-LO-phonon interaction. The possible ways for controlling the hot-phonon effect on electron drift velocity through variation of electron density, channel composition, and hot-phonon lifetime are discussed. The expected dependence of hot-electron drift velocity on hot-phonon lifetime is confirmed experimentally. A self-consistent explanation of different frequency behaviour of InP-based and GaN-based HEMTs is obtained from a comparative study of hot-phonon effects.

  • Low Complexity Intercarrier Interference Equalization Technique in OFDM System

    Feng YANG  WenJun ZHANG  ShuRong JIAO  Xiaoyun HOU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2043-2049

    Intercarrier interference will cause the loss of subchannel orthogonality and increase the error floor in proportion to the Doppler frequency. In this paper, we firstly analyze the generation mechanism of intercarrier interference in OFDM. Then we propose an O(N log2N) complexity ICI equalizer for OFDM systems in the presence of double selective fading which is mainly bases on FFT operation. Simulation result shows that with only 6 iterations LCD-FFT can achieve better performance than the LS-equalizer. After 10 iterations LCD-FFT performs almost the same as MMSE equalizer.

  • Single Carrier Frequency-Domain Equalization with Transmit Diversity over Mobile Multipath Channels

    Tae-Won YUNE  Chan-Ho CHOI  Gi-Hong IM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2050-2060

    This paper discusses a cyclic prefixed single carrier frequency-domain equalization (SC-FDE) scheme with two types of transmit diversity. Firstly, we propose a SC-FDE system with space-frequency block coding (SFBC). The transmit sequence of the proposed system is designed to have spatial and frequency diversities, which is equivalent to the SFBC. The corresponding combining receiver is derived under a minimum mean square error (MMSE) criterion. It is shown that the proposed system significantly outperforms the SC-FDE system with space-time block coding (STBC) over fast fading channels, while providing lower computational complexity than orthogonal frequency division multiplexing (OFDM) combined with SFBC. We verify the performance of two-branch transmit diversity systems including the proposed one through bit error rate (BER) analysis. Secondly, as a scheme that combines STBC and SFBC, a space-time-frequency block code (STFBC) SC-FDE system is presented. Computer simulation results show that the proposed STFBC SC-FDE system has better immunity to the distortion caused by both fast fading and severe frequency selective fading, compared to the SC-FDE system with the STBC or the SFBC scheme. Complexity analysis is also conducted to compare their computational loads of the transceiver. It is shown that the proposed STFBC SC-FDE system has lower computational complexity than the STFBC OFDM system.

  • Accuracy of Two-Dipole Source Localization Using a Method Combining BP Neural Network with NLS Method from 32-Channel EEGs

    Zhuoming LI  Xiaoxiao BAI  Qinyu ZHANG  Masatake AKUTAGAWA  Fumio SHICHIJO  Yohsuke KINOUCHI  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:7
      Page(s):
    2234-2242

    The electroencephalogram (EEG) has become a widely used tool for investigating brain function. Brain signal source localization is a process of inverse calculation from sensor information (electric potentials for EEG) to the identification of multiple brain sources to obtain the locations and orientation parameters. In this paper, we describe a combination of the backpropagation neural network (BPNN) with the nonlinear least-square (NLS) method to localize two dipoles with reasonable accuracy and speed from EEG data computerized by two dipoles randomly positioned in the brain. The trained BPNN, obtains the initial values for the two dipoles through fast calculation and also avoids the influence of noise. Then the NLS method (Powell algorithm) is used to accurately estimate the two dipole parameters. In this study, we also obtain the minimum distance between the assumed dipole pair, 0.8 cm, in order to localize two sources from a smaller limited distance between the dipole pair. The present simulation results demonstrate that the combined method can allow us to localize two dipoles with high speed and accuracy, that is, in 20 seconds and with the position error of around 6.5%, and to reduce the influence of noise.

  • Estimation of OFDM Integer Frequency Offset over Rapidly Time-Varying Channels

    Young-Hwan YOU  Sung-Jin KANG  Dae-Ki HONG  Jang-Yeon LEE  Jin-Woong CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2099-2101

    In this letter, we present a simple way of estimating the integer frequency offset of orthogonal frequency division multiplexing (OFDM) system over a rapidly time-varying channel. By utilizing the channel responses of neighboring subcarriers within one pilot symbol, the frequency offset estimator is derived. We show by simulation that the proposed estimator can accurately estimate the integer frequency offset with reduced computational burden.

  • Communication Capacity and Quality Enhancement Using a Two-Layered Adaptive Resource Allocation Scheme for Multi-Beam Mobile Satellite Communication Systems

    Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Masazumi UEBA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1930-1939

    To obtain large capacity, high quality mobile satellite communication systems in the future, we must use a multi-beam that can cope with extremely high levels of frequency reuse. This paper describes a novel resource allocation algorithm for multi-beam satellite communication systems that can dynamically adapt to maximum communication capacity without compromising quality. The algorithm combines two resource allocation schemes that enable it to contend with the ever-changing user distribution and inter-beam interference conditions. The first scheme optimizes the resources amongst beams. To minimize interference, the optimal constraint conditions are clarified when all clusters share and occupy the same bandwidth completely. These constraints are used in the optimization algorithm. The second scheme manages the various required resources and adapts them to the beam gain and interference levels at various user locations within a single beam. We propose a fixed power adaptive modulation scheme to obtain stable communications. This two-layered scheme can satisfactorily allocate multi-beam satellite resources to contend with the increasing communication capacity and still improve the quality.

  • On the Performance Improvement Achieved by Packet Dispersion

    Fumio ISHIZAKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E89-B No:7
      Page(s):
    1977-1986

    This paper analytically studies performance improvement achieved by packet dispersion. Contrary to the previous work on packet dispersion, we consider the tail distribution of queue length and that of packet delay as performance measures, and we model a packet network as multiple parallel queues where the arrival processes from sources are not renewal but highly bursty. To appropriately evaluate the performance improvement achieved by packet dispersion, we develop approximate formulas to estimate the tail distributions. Our approximate formulas yield more accurate estimations than the standard approximate formulas. In the numerical results, we observe that packet dispersion can greatly improve the delay performance of packets. We also see that packet-level load balancing is superior to flow-level load balancing for any distribution ratio.

  • A Novel Dual Band Transmitter for Wireless LAN IEEE 802.11a/g Applications with Digital Predistortion Linearization

    Sung Min KANG  Jae Hong CHOI  Kyung Heon KOO  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E89-B No:7
      Page(s):
    1987-1993

    A novel dual band transmitter module for 2.4 GHz and 5.8 GHz wireless LAN applications with adaptive digital predistortion linearization is presented. The module operates either as a power amplifier for 2.4 GHz or frequency doubler for 5.8 GHz band. Amplification gain is 12.9 dB at 2.4 GHz and multiplication gain is 3.3 dB at 5.8 GHz. At 2.4 GHz band, the second harmonic is about 36.5 dB lower than the fundamental, and the 2.9 GHz fundamental signal is 20.3 dB lower than the second harmonic output at 5.8 GHz operation. An adaptive digital predistortion scheme is proposed to linearize the 2.4 GHz amplifier, and to get the proper 5.8 GHz band wireless LAN signal. The 2.4 GHz amplifier with predistortion satisfies the ACPR mask requirement for the input 1 dB compression power of 5 dBm and the linearized frequency doubler shows 26 dB ACPR improvement at 11 MHz offset from center frequency by using the proposed predistortion linearization. The frequency doubler output spectrum with predistortion does meet the IEEE standard Tx mask.

  • A Method of Intercell Carrier Frequency-Offset Estimation and Cell-Searching for Downlink in OFDM-Based Cellular Systems

    Kyung Won PARK  Yong Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2088-2091

    In this letter, a method estimating the intercell carrier frequency-offset (CFO) in orthogonal frequency division multiplexing (OFDM)-based cellular systems is proposed for the user's equipment (UE), especially at the cell boundary, in downlink channels. After describing a new method of deriving the intercell CFO from the signals received by adjacent base stations (BSs), we propose a cell-searching method using the estimated CFOs. It is shown by computer simulation that the proposed methods can uniquely estimate the intercell CFOs and identify the target BS with a high detection probability at the UE.

  • Phase Jitter Injection into Sub-Carriers for Peak Power Reduction of OFDM Signal without Side Information Transmission

    Noboru IZUKA  Yoshimasa DAIDO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2092-2095

    This letter proposes a peak power reduction method that optimizes sub-carrier phases of an OFDM signal. The proposed method doesn't require side information transmission and original signal regeneration, which are required in conventional peak power reduction methods with phase optimization, since the optimized phases are distributed as jitter around the original phases before optimization. The iterative PTS (partial transmit sequences) algorithm with a restricted phase control range is used for the jitter injection: the phase optimization process is repeated with widening the control range. A computer simulation is carried out to estimate the proposed method performance. The results show that the proposed method can reduce the peak power by 4 dB when the power penalty caused by phase jitter is only 0.2 dB.

  • Subcarrier Block Power Control for Adaptive Downlink OFDM with Frequency Spreading and Equalization

    Nam-Su KIM  Sungho CHO  Chang-Jun AHN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2102-2105

    In this letter, we propose the transmit power controlled adaptive downlink frequency symbol spreading OFDM (TPC-AMS/FSS-OFDM) system. In the TPC-AMS/FSS-OFDM, each S/P transformed signal is spread by orthogonal spreading codes and combined in the transmitter, so the detected signals obtain the same SINR for each frequency symbol spreading block in the receiver. In this case, we can assign the same modulation level and transmit power for each frequency symbol spreading block for next transmission. Thus, the proposed system not only increases throughput performance but also reduces the total transmit power, FBI and MLI.

  • A Method Using an Averaging Technique for the Analysis and Evaluation of Real Quasi-Resonant Converters

    Yi-Cherng LIN  Der-Cherng LIAW  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    803-810

    A method using an averaging technique for the analysis and evaluation of real quasi-resonant converters (QRC's) is proposed in this paper. To reduce the great difference between the real characteristics and those of ideal circuits, a modeling technique is developed by considering the effect of parasitic power losses. Then, using the averaging approach reasonably simplifies the process of solving equations to obtain the steady-state solutions of state variables. Also, an updating algorithm is constructed to take all the power losses such as core losses, which are often absent in the conventional analysis, into account to improve the accuracy of the steady-state solutions. By these efforts, the evaluation of characteristics for QRC's is realized.

  • Iterative Sequential OFDM Symbol Estimation Algorithm over Time-Frequency-Selective Fading Channels

    Hoojin LEE  Joonhyuk KANG  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1922-1925

    Time-frequency-selective, i.e., time-variant multipath, fading in orthogonal frequency division multiplexing (OFDM) systems destroys subcarrier orthogonality, resulting in intercarrier interference (ICI). In general, the previously proposed estimation schemes to resolve this problem are only applicable to slowly time-variant channels or suffer from high complexity due to large-sized matrix inversion. In this letter, we propose and develop efficient symbol estimation schemes, called the iterative sequential neighbor search (ISNS) algorithm and the simplified iterative sequential neighbor search (S-ISNS) algorithm. These algorithms achieve enhanced performances with low complexities, compared to the existing estimation methods.

  • Design of Storage Structure for Path-Based Query on RDF and RDF Schema

    YounHee KIM  ByungGon KIM  HaeChull LIM  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1733-1735

    In the Semantic Web, metadata and ontology for representing semantics and conceptual relationships of information resources are essential factors. RDF and RDF Schema are the W3C standard models for describing metadata and ontology. In this paper, we focus on a result of analyzing available query patterns considering both RDF and RDF Schema. And we propose a structure to store and query using path information in graph models of RDF and RDF Schema. The proposed structure supports whole query patterns fairly. We can retrieve entities that are reached from a certain class, property, resource, or literal in RDF and RDF Schema without a loss of performance because of multiple joins with tables. And, through encoding schemes, we determine easily hierarchical relationships between classes or properties.

  • Ternary Sequence Set Having Periodic and Aperiodic Zero-Correlation Zone

    Takafumi HAYASHI  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:6
      Page(s):
    1825-1831

    A new class of ternary sequence with a zero-correlation zone is introduced. The proposed sequence sets have a zero-correlation zone for both periodic and aperiodic correlation functions. The proposed sequences can be constructed from a pair of Hadamard matrices of size n0n0 and a Hadamard matrix of size n1n1. The constructed sequence set consists of n0 n1 ternary sequences, and the length of each sequence is (n1+1) for a non-negative integer m. The zero-correlation zone of the proposed sequences is |τ|≤ -1, where τ is the phase shift. The sequence member size of the proposed sequence set is equal to times that of the theoretical upper bound of the member size of a sequence set with a zero-correlation zone.

3741-3760hit(6809hit)