The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

1441-1460hit(6809hit)

  • Correcting Distortion of Views into Aquarium and Its Accuracy

    Yukio ISHIHARA  Makio ISHIHARA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/06/25
      Vol:
    E97-D No:9
      Page(s):
    2552-2553

    We present a way to correct light distortion of views looking into an aquarium. When we see fish in an aquarium, they appear closer and distorted due to light distortion. In order to correct the distortion, light rays travelling in the aquarium directly towards an observer should hit him/her after emerging from the aquarium. In this manuscript, those light rays are captured by a perspective camera at specific positions, not the observer position. And then it is shown that the taken images are successfully merged as a single one that is not affected by light distortion.

  • Analog Single-Carrier Transmission with Frequency-Domain Equalization

    Thanh Hai VO  Shinya KUMAGAI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1958-1966

    In this paper, a new analog signal transmission technique called analog single-carrier transmission with frequency-domain equalization (analog SC-FDE) is proposed. Analog SC-FDE applies discrete Fourier transform (DFT), frequency-domain spectrum shaping and mapping, inverse DFT (IDFT), and cyclic prefix (CP) insertion before transmission. At the receiver, one-tap FDE is applied to take advantage of frequency diversity. This paper considers, as an example, analog voice transmission. A theoretical analysis of the normalized mean square error (NMSE) performance is carried out to evaluate the transmission property of the proposed analog SC-FDE and is confirmed by computer simulation. We show that analog SC-FDE achieves better NMSE performance than conventional analog signal transmission scheme.

  • Privacy-Preserving Statistical Analysis Method by Splitting Server Roles for Distributed Real-World Data

    Jun ISHII  Hiroyuki MAEOMICHI  Akihiro TSUTSUI  Ikuo YODA  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1779-1789

    This paper propose a novel method for obtaining statistical results such as averages, variances, and correlations without leaking any raw data values from data-holders by using multiple pseudonyms. At present, to obtain statistical results using a large amount of data, we need to collect all data in the same storage device. However, gathering real-world data that were generated by different people is not easy because they often contain private information. The authors split the roles of servers into publishing pseudonyms and collecting answers. Splitting these roles, different entities can more easily join as pseudonym servers than in previous secure multi-party computation methods and there is less chance of collusion between servers. Thus, our method enables data holders to protect themselves against malicious attacks from data users. We also estimated a typical problem that occurred with our method and added a pseudonym availability confirmation protocol to prevent the problem. We report our evaluation of the effectiveness of our method through implementation and experimentation and discuss how we incorporated the WebSocket protocol and MySQL Memoty Storage Engine to remove the bottleneck and improve the implementation style. Finally, we explain how our method can obtain averages, variances, and correlation from 5000 data holders within 50 seconds.

  • Real-Time Sound Field Transmission System by Using Wave Field Reconstruction Filter and Its Evaluation

    Shoichi KOYAMA  Ken'ichi FURUYA  Hisashi UEMATSU  Yusuke HIWASAKI  Yoichi HANEDA  

     
    PAPER

      Vol:
    E97-A No:9
      Page(s):
    1840-1848

    A new real-time sound field transmission system is presented. To construct this system, a large listening area needs to be reproduced at not less than a constant height. Additionally, the driving signals of the loudspeakers should be obtained only from received signals of microphones. Wave field reconstruction (WFR) filtering for linear arrays of microphones and loudspeakers is considered to be suitable for this kind of system. An experimental system was developed to show the feasibility of real-time sound field transmission using the WFR filter. Experiments to measure the reproduced sound field and a subjective listening test of sound localization were conducted to evaluate the proposed system. Although the reproduced sound field included several artifacts such as spatial aliasing and faster amplitude decay, the experimental results indicated that the proposed system was able to provide sound localization accuracy for virtual sound sources comparable to that for real sound sources in a large listening area.

  • Influence of Contact Material Vapor on Thermodynamic and Transport Properties of Arc Plasmas Occurring between Ag and Ag/SnO2 contact pairs

    Takuya HARA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E97-C No:9
      Page(s):
    863-866

    For break arcs occurring between Ag and Ag/SnO$_2$ 12,wt% electrical contact pairs, the electrical conductivity, viscosity and specific heat at constant pressure are calculated as thermodynamic and transport properties. Mixture rates of contact material vapor are 0%, 1%, 10% and 100%. Influence of the contact material on the properties is investigated. Temperature for the calculation ranges from 2000,K to 20000,K. Following results are shown. When the mixture rate is changed, the electrical conductivity varies at lower temperature (< 10000,K), and the viscosity and specific heat vary widely at all temperature range. The electrical conductivity is independent of the mixture rate when the temperature is exceeding 10000,K. The thermodynamic and transport properties are independent of the kind of the contact materials.

  • Equivalent Circuit Model of High Speed VCSEL Implemented in Circuit Simulators

    Kazunori MIYOSHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E97-C No:9
      Page(s):
    904-910

    Optical interfaces have been recently standardized as the main physical layer interfaces for most short length optical communication systems, such as IEEE802.3ae, OIF-VSR, and the Fiber Channel. As interface speed increases, the requirements for forecasting the optical characteristics of direct modulated laser diodes (LDs) also increase because those standards define the specifications for physical layers with optical domains. In this paper, a vertical-cavity surface-emitting laser (VCSEL) equivalent electronic circuit model is described with which designers can simulate the $I-L-V$, S-parameter, and transient characteristics of LDs on a circuit simulator by improving convergence. We show that the proposed VCSEL model can model an 850-nm bandwidth VCSEL with 10-Gbps operation.

  • D-AVTree: DHT-Based Search System to Support Scalable Multi-Attribute Queries

    Hoaison NGUYEN  Yasuo TAN  Yoichi SHINODA  

     
    PAPER-Network

      Vol:
    E97-B No:9
      Page(s):
    1898-1909

    At present, vast numbers of information resources are available on the Internet. However, one emerging issue is how to search and exploit these information resources in an efficient and flexible manner with high scalability. In this study, we focused our attention on the design of a distributed hash table (DHT)-based search system that supports efficient scalable multi-attribute queries of information resources in a distributed manner. Our proposed system, named D-AVTree, is built on top of a ring-based DHT, which partitions a one-dimensional key space across nodes in the system. It utilizes a descriptive naming scheme, which names each resource using an attribute-value (AV) tree, and the resource names are mapped to d-bit keys in order to distribute the resource information to responsible nodes based on a DHT routing algorithm. Our mapping scheme maps each AV branch of a resource name to a d-bit key where AV branches that share a subsequence of AV pairs are mapped to a continuous portion of the key space. Therefore, our mapping scheme ensures that the number of resources distributed to a node is small and it facilitates efficient multi-attribute queries by querying only a small number of nodes. Further, the scheme has good compatibility with key-based load balancing algorithms for DHT-based networks. Our system can achieve both efficiency and a good degree of load balancing even when the distribution of AV pairs in the resource names is skewed. Our simulation results demonstrated the efficiency of our solution in terms of the distribution cost, query hit ratio, and the degree of load balancing compared with conventional approaches.

  • Generalized Fourier Transform and the Joint N-Adic Complexity of a Multisequence

    Minghui YANG  Dongdai LIN  Xuan GUANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:9
      Page(s):
    1982-1986

    Recently the word-based stream ciphers have been the subject of a considerable amount of research. The theory of such stream ciphers requires the study of the complexity of a multisequence. Let S1, S2, . . . , Sm be m N-ary sequences of period T, i.e., a multisequence. The relationship between the joint N-adic complexity and the number of the nonzero columns of the generalized Fourier transform for the N-ary multisequence is determined which generalizes the well-known result about the joint linear complexity and the generalized Fourier transform for a multisequence to the case of the joint N-adic complexity.

  • A Novel Optimal Social Trust Path Selection Algorithm for Large-Scale Complex Social Networks

    Lianggui LIU  Huiling JIA  

     
    PAPER-Internet

      Vol:
    E97-B No:9
      Page(s):
    1910-1920

    With the phenomenal explosion in online services, social networks are becoming an emerging ubiquitous platform for numerous services where service consumers require the selection of trustworthy service providers before invoking services with the help of other intermediate participants. Under this circumstance, evaluation of the trustworthiness of the service provider along the social trust paths from the service consumer to the service provider is required and to this end, selection of the optimal social trust path (OSTP) that can yield the most trustworthy evaluation result is a pre-requisite. OSTP selection with multiple quality of trust (QoT) constraints has been proven to be NP-Complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this problem. However, existing solutions cannot guarantee the search efficiency, that is, they have difficulty in avoiding suboptimal solutions during the search process. Quantum annealing uses delocalization and tunneling to avoid local minima without sacrificing execution time. Several recent studies have proven that it is a promising way to tackle many optimization problems. In this paper, we propose a novel quantum annealing based OSTP selection algorithm (QA_OSTP) for large-scale complex social networks. Experiments show that QA_OSTP has better performance than its heuristic counterparts.

  • Experimental Study on Arc Duration under Different Atmospheres

    Chen LI  Zhenbiao LI  Qian WANG  Du LIU  Makoto HASEGAWA  Lingling LI  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    843-849

    To clarify the dependence of arc duration on atmosphere, experiments were conducted under conditions of air, N$_{2}$, Ar, He and CO$_{2}$ with the pressure of 0.1,MPa in a 14,V/28,V/42,V circuit respectively. A quantitative relationship between arc duration and gas parameters such as ionization potential, thermal conductivity was obtained from the experimental data. Besides, the inherent mechanism of influence of atmosphere on arc duration was discussed.

  • A Resource Analysis of Radio Space Distribution for the Wide-Area Virtualization of Wireless Transceivers

    Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1800-1807

    Wide area virtualization of wireless transceivers by centrally managed software radio systems is a way to efficiently share the resources for supporting a variety of wireless protocols. In order to enable wide-area virtualization of wireless transceivers, the authors have developed a mechanism to deliver the radio space information which is quantized broadband radio wave information including the radio signals to the transceivers. Delivery mechanism consists of a distribution server which distributes radio space corresponding to the request of the client such as the center frequency and the bandwidth and a client which uses the radio space information. Accumulation of the distribution servers which deliver radio space information simultaneously to a large number of clients will contribute to build an infrastructure for any clients ubiquitously distributed over the globe. In this paper, scale-out architecture of a distribution server is proposed to deliver unlimitedly broadband radio space information to unlimited number of clients. Experimental implementation indicates the architecture to be a scale-out solution, while the number of clients is restricted by the computer resources of the distribution server. The band pass filter processing for individual client in the distribution server consumes the dominant part of the processing power, and the number of CPU cores is the upper limit of clients supportable for the distribution server in the current operating system implementation. The logical increase of the number of CPU cores by hardware multithreading does not contribute to relax this limit. We also discuss the guidance architecture or building server derived from these conclusions.

  • Pulse Arrival Time Estimation Based on Multi-Level Crossing Timing and Receiver Training

    Zhen YAO  Hong MA  Cheng-Guo LIANG  Li CHENG  

     
    PAPER-Sensing

      Vol:
    E97-B No:9
      Page(s):
    1984-1989

    An accurate time-of-arrival (TOA) estimation method for isolated pulses positioning system is proposed in this paper. The method is based on a multi-level crossing timing (MCT) digitizer and least square (LS) criterion, namely LS-MCT method, in which TOA of the received signal is directly described as a parameterized combination of a set of MCT samples of the leading and trailing edges of the signal. The LS-MCT method performs a receiver training process, in which a GPS synchronized training pulse generator (TPG) is used to obtain training data and determine the parameters of the TOA combination. The LS method is then used to optimize the combination parameters with a minimization criterion. The proposed method is compared to the conventional TOA estimation methods such as leading edge level crossing discriminator (LCD), adaptive thresholding (ATH), and signal peak detection (PD) methods. Simulation results show that the proposed algorithm leads to lower sensitivity to signal-to-noise ratio (SNR) and attains better TOA estimation accuracy than available TOA methods.

  • Linearization Equation Attack on 2-Layer Nonlinear Piece in Hand Method

    Xuyun NIE  Albrecht PETZOLDT  Johannes BUCHMANN  Fagen LI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:9
      Page(s):
    1952-1961

    The Piece in Hand method is a security enhancement technique for Multivariate Public Key Cryptosystems (MPKCs). Since 2004, many types of this method have been proposed. In this paper, we consider the 2-layer nonlinear Piece in Hand method as proposed by Tsuji et al. in 2009. The key point of this method is to introduce an invertible quadratic polynomial map on the plaintext variables to add perturbation to the original MPKC. An additional quadratic map allows the owner of the secret key to remove this perturbation from the system. By our analysis, we find that the security of the enhanced scheme depends mainly on the structure of the quadratic polynomials of this auxiliary map. The two examples proposed by Tsuji et al. for this map can not resist the Linearization Equations attack. Given a valid ciphertext, we can easily get a public key which is equivalent to that of the underlying MPKC. If there exists an algorithm that can recover the plaintext corresponding to a valid ciphertext of the underlying MPKC, we can construct an algorithm that can recover the plaintext corresponding to a valid ciphertext of the enhanced MPKC.

  • Aperiodic Complementary Sequences

    Zhimin SUN  Xiangyong ZENG  Yang YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1998-2004

    For an integer q≥2, new sets of q-phase aperiodic complementary sequences (ACSs) are constructed by using known sets of q-phase ACSs and certain matrices. Employing the Kronecker product to two known sets of q-phase ACSs, some sets of q-phase aperiodic complementary sequences with a new length are obtained. For an even integer q, some sets of q-phase ACSs with new parameters are generated, and their equivalent matrix representations are also presented.

  • Efficient Multi-Service Allocation for Digital Terrestrial Broadcasting Systems

    Bo HAO  Jun WANG  Zhaocheng WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:9
      Page(s):
    1977-1983

    This paper presents an efficient multi-service allocation scheme for the digital television terrestrial broadcasting systems in which the fixed service is modulated by orthogonal frequency division multiplexing and quadrature amplitude modulation (OFDM/QAM) with larger FFT size and the added mobile service is modulated by OFDM and offset quadrature amplitude modulation (OQAM) with smaller FFT size. The two different types of services share one 8MHz broadcasting channel. The isotropic orthogonal transform algorithm (IOTA) is chosen as the shaping filter for OQAM because of its isotropic convergence in time and frequency domain and the proper FFT size is selected to maximum the transmission capacity under mobile environment. The corresponding transceiver architecture is also proposed and analyzed. Simulations show that the newly added mobile service generates much less out-of-band interference to the fixed service and has a better performance under fast fading wireless channels.

  • Synthesis of Quantum Arrays from Kronecker Functional Lattice Diagrams

    Martin LUKAC  Dipal SHAH  Marek PERKOWSKI  Michitaka KAMEYAMA  

     
    PAPER-Reversible/Quantum Computing

      Vol:
    E97-D No:9
      Page(s):
    2262-2269

    Reversible logic is becoming more and more popular due to the fact that many novel technologies such as quantum computing, low power CMOS circuit design or quantum optical computing are becoming more and more realistic. In quantum computing, reversible computing is the main venue for the realization and design of classical functions and circuits. We present a new approach to synthesis of reversible circuits using Kronecker Functional Lattice Diagrams (KFLD). Unlike many of contemporary algorithms for synthesis of reversible functions that use n×n Toffoli gates, our method synthesizes functions using 3×3 Toffoli gates, Feynman gates and NOT gates. This reduces the quantum cost of the designed circuit but adds additional ancilla bits. The resulting circuits are always regular in a 4-neighbor model and all connections are predictable. Consequently resulting circuits can be directly mapped in to a quantum device such as quantum FPGA [14]. This is a significant advantage of our method, as it allows us to design optimum circuits for a given quantum technology.

  • SRT-Rank: Ranking Keyword Query Results in Relational Databases Using the Strongly Related Tree

    In-Joong KIM  Kyu-Young WHANG  Hyuk-Yoon KWON  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:9
      Page(s):
    2398-2414

    A top-k keyword query in relational databases returns k trees of tuples — where the tuples containing the query keywords are connected via primary key-foreign key relationships — in the order of relevance to the query. Existing works are classified into two categories: 1) the schema-based approach and 2) the schema-free approach. We focus on the former utilizing database schema information for more effective ranking of the query results. Ranking measures used in existing works can be classified into two categories: 1) the size of the tree (i.e., the syntactic score) and 2) ranking measures, such as TF-IDF, borrowed from the information retrieval field. However, these measures do not take into account semantic relevancy among relations containing the tuples in the query results. In this paper, we propose a new ranking method that ranks the query results by utilizing semantic relevancy among relations containing the tuples at the schema level. First, we propose a structure of semantically strongly related relations, which we call the strongly related tree (SRT). An SRT is a tree that maximally connects relations based on the lossless join property. Next, we propose a new ranking method, SRT-Rank, that ranks the query results by a new scoring function augmenting existing ones with the concept of the SRT. SRT-Rank is the first research effort that applies semantic relevancy among relations to ranking the results of keyword queries. To show the effectiveness of SRT-Rank, we perform experiments on synthetic and real datasets by augmenting the representative existing methods with SRT-Rank. Experimental results show that, compared with existing methods, SRT-Rank improves performance in terms of four quality measures — the mean normalized discounted cumulative gain (nDCG), the number of queries whose top-1 result is relevant to the query, the mean reciprocal rank, and the mean average precision — by up to 46.9%, 160.0%, 61.7%, and 63.8%, respectively. In addition, we show that the query performance of SRT-Rank is comparable to or better than those of existing methods.

  • Fully Automatic Extraction of Carotid Artery Contours from Ultrasound Images

    Bunpei TOJI  Jun OHMIYA  Satoshi KONDO  Kiyoko ISHIKAWA  Masahiro YAMAMOTO  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:9
      Page(s):
    2493-2500

    In this paper, we propose a fully automatic method for extracting carotid artery contours from ultrasound images based on an active contour approach. Several contour extraction techniques have been proposed to measure carotid artery walls for early detection of atherosclerotic disease. However, the majority of these techniques require a certain degree of user interaction that demands time and effort. Our proposal automatically detects the position of the carotid artery by identifying blood flow information related to the carotid artery, and an active contour model is employed that uses initial contours placed in the detected position. Our method also applies a global energy minimization scheme to the active contour model. Experiments on clinical cases show that the proposed method automatically extracts the carotid artery contours at an accuracy close to that achieved by manual extraction.

  • Adaptive Q-Learning Cell Selection Method for Open-Access Femtocell Networks: Multi-User Case

    Chaima DHAHRI  Tomoaki OHTSUKI  

     
    PAPER-Network Management/Operation

      Vol:
    E97-B No:8
      Page(s):
    1679-1688

    Open-access femtocell networks assure the cellular user of getting a better and stronger signal. However, due to the small range of femto base stations (FBSs), any motion of the user may trigger handover. In a dense environment, the possibility of such handover is very frequent. To avoid frequent communication disruptions due to phenomena such as the ping-pong effect, it is necessary to ensure the effectiveness of the cell selection method. Existing selection methods commonly uses a measured channel/cell quality metric such as the channel capacity (between the user and the target cell). However, the throughput experienced by the user is time-varying because of the channel condition, i.e., owing to the propagation effects or receiver location. In this context, the conventional approach does not reflect the future performance. To ensure the efficiency of cell selection, user's decision needs to depend not only on the current state of the network, but also on the future possible states (horizon). To this end, we implement a learning algorithm that can predict, based on the past experience, the best performing cell in the future. We present in this paper a reinforcement learning (RL) framework as a generic solution for the cell selection problem in a non-stationary femtocell network that selects, without prior knowledge about the environment, a target cell by exploring past cells' behavior and predicting their potential future states based on Q-learning algorithm. Then, we extend this proposal by referring to a fuzzy inference system (FIS) to tune Q-learning parameters during the learning process to adapt to environment changes. Our solution aims at minimizing the frequency of handovers without affecting the user experience in terms of channel capacity. Simulation results demonstrate that· our solution comes very close to the performance of the opportunistic method in terms of capacity, while fewer handovers are required on average.· the use of fuzzy rules achieves better performance in terms of received reward (capacity) and number of handovers than fixing the values of Q-learning parameters.

  • IDDQ Outlier Screening through Two-Phase Approach: Clustering-Based Filtering and Estimation-Based Current-Threshold Determination

    Michihiro SHINTANI  Takashi SATO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:8
      Page(s):
    2095-2104

    We propose a novel IDDQ outlier screening flow through a two-phase approach: a clustering-based filtering and an estimation-based current-threshold determination. In the proposed flow, a clustering technique first filters out chips that have high IDDQ current. Then, in the current-threshold determination phase, device-parameters of the unfiltered chips are estimated based on measured IDDQ currents through Bayesian inference. The estimated device-parameters will further be used to determine a statistical leakage current distribution for each test pattern and to calculate a and suitable current-threshold. Numerical experiments using a virtual wafer show that our proposed technique is 14 times more accurate than the neighbor nearest residual (NNR) method and can achieve 80% of the test escape in the case of small leakage faults whose ratios of leakage fault sizes to the nominal IDDQ current are above 40%.

1441-1460hit(6809hit)