The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

1461-1480hit(6809hit)

  • A QoS-Aware Differential Processing Control Scheme for OpenFlow-Based Mobile Networks

    Yeunwoong KYUNG  Taihyong YIM  Taekook KIM  Tri M. NGUYEN  Jinwoo PARK  

     
    LETTER-Information Network

      Vol:
    E97-D No:8
      Page(s):
    2178-2181

    This paper proposes a QoS-aware differential processing control (QADPC) scheme for OpenFlow-based mobile networks. QADPC classifies the input packets to the control plane by considering end terminal mobility and service type. Then, different capacities are assigned to each classified packet for prioritized processing. By means of Markov chains, QADPC is evaluated in terms of blocking probability and waiting time in the control plane. Analytical results demonstrate that QADPC offers high priority packets both lower blocking probability and less waiting time.

  • A Queueing Model of a Multi-Service System with State-Dependent Distribution of Resources for Each Class of Calls

    Slawomir HANCZEWSKI  Maciej STASIAK  Joanna WEISSENBERG  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1592-1605

    This paper presents a new, accurate multi-service model of a queueing system with state-dependent distribution of resources for each class of calls. The analysis of the considered queueing system was carried out at both the microstate and macrostate levels. The proposed model makes it possible to evaluate averaged parameters of queues for individual classes of calls that are offered to the system. In addition, the paper proposes a new algorithm for a determination of the occupancy distribution in the queueing system at the microstate level. The results of the calculations are compared with the results of a digital simulation for multi-service queueing systems with state-independent distribution of resources.

  • Performance Analysis of Cooperative-ARQ Schemes in Free-Space Optical Communications

    Vuong V. MAI  Anh T. PHAM  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1614-1622

    We theoretically analyze the performance of free-space optical (FSO) systems using cooperative-ARQ (C-ARQ), a joint scheme of automatic-repeat-request (ARQ) and cooperative diversity, over atmospheric turbulence channels. We also propose a modified C-ARQ (M-C-ARQ) scheme that allows relay nodes to store a copy of frames for the more efficient response to transmission failure so that both transmission delay and energy consumption can be improved. Using Markov chain-based analytical models for both schemes, the system performance is analytically studied in terms of frame-error rate, goodput and energy efficiency, which directly reflect the transmission delay and energy consumption. Numerical results confirm that the proposed schemes outperform conventional ones. In addition, we discuss cross-layer design strategies for selecting parameters in both physical and link layers in order to optimize the performance of FSO systems over different atmospheric turbulence conditions and channel distances.

  • A Multiple Cooperative Node Selection Method for Reliable Wireless Multi-Hop Data Transmission

    Masaki KUBO  Kensuke NAKANISHI  Kentaro YANAGIHARA  Shinsuke HARA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:8
      Page(s):
    1717-1727

    The use of cooperative nodes is effective for enhancing the reliability of wireless data transmission between a source and a destination by means of transmit diversity effect. However, in its application to wireless multi-hop networks, how to form cooperative node candidates and how to select multiple cooperative nodes out of them have not been well investigated. In this paper, we propose a multiple cooperative node selection method based on a criterion composed of “quality” and “angle” metrics, which can select and order adequate cooperative nodes. Computer simulation results show that the proposed method can effectively reduce the packet error rate without any knowledge on node location.

  • Analysis of Dynamic and Transient Response of Frequency Modulated Class E Amplifier

    Tadashi SUETSUGU  Xiuqin WEI  Marian K. KAZIMIERCZUK  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E97-B No:8
      Page(s):
    1630-1637

    The dynamic characteristics of the class E power amplifier with frequency modulation are derived. Such an analysis is essential for designing amplitude and frequency modulated amplifier systems such as an EER scheme. Conventionally, an analytical expression for the frequency response of a frequency modulated class E amplifier has not been derived yet. This omission is rectified here by modeling the circuit with both a low-frequency model and a high-frequency model. Further, a time domain waveform is derived from the frequency domain transfer function for some typical time varying drive signals. The analytical results for the frequency response of a 1-MHz class E amplifier are shown to match PSpice simulations and measured values well.

  • A Privacy Protected k-NN Query Processing Algorithm Based on Network Voronoi Diagram in Spatial Networks

    Jung-Ho UM  Miyoung JANG  Jae-Woo CHANG  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:7
      Page(s):
    1735-1745

    With the advances in wireless Internet and mobile positioning technology, location-based services (LBSs) have become popular. In LBSs, users must send their exact locations in order to use the services, but they may be subject to several privacy threats. To solve this problem, query processing algorithms based on a cloaking method have been proposed. The algorithms use spatial cloaking methods to blur the user's exact location in a region satisfying the required privacy threshold (k). With the cloaked region, an LBS server can execute a spatial query processing algorithm preserving their privacy. However, the existing algorithms cannot provide good query processing performance. To resolve this problem, we, in this paper, propose a k-NN query processing algorithm based on network Voronoi diagram for spatial networks. Therefore, our algorithm can reduce network expansion overhead and share the information of the expanded road network. In order to demonstrate the efficiency of our algorithms, we have conducted extensive performance evaluations. The results show that our algorithm achieves better performance on retrieval time than the existing algorithms, such as PSNN and kRNN. This is because our k-NN query processing algorithm can greatly reduce a network expansion cost for retrieving k POIs.

  • Boundary Integral Equation Analysis of Spoof Localized Surface Plasmons Excited in a Perfectly Conducting Cylinder with Longitudinal Corrugations

    Kazuhiro FUJITA  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    710-713

    The main purpose of this paper is to apply the boundary integral equation (BIE) method to the analysis of spoof localized surface plasmons (spoof LSPs) excited in a perfectly conducting cylinder with longitudinal corrugations. Frequency domain BIE schemes based on electric field integral equation (EFIE), magnetic field integral equation (MFIE) and combined field integral equation (CFIE) formulations are used to solve two-dimensional electromagnetic (EM) problems of scattering from the cylinder illuminated by a transverse electric plane wave. In this approach effects of spoof LSPs are included in the secondary surface current and charge densities resulting from the interaction between the plane wave and the cylinder. Numerical results obtained with the BIE schemes are validated by comparison with that of a recently proposed modal solution based on the metamaterial approximation.

  • Irregular Triangular Quadrature Amplitude Modulations

    Sung-Joon PARK  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1358-1364

    The recently suggested regular-type triangular quadrature amplitude modulation (TQAM) provides considerable power gain over square quadrature amplitude modulation (SQAM) at the expense of a slight increase in detection complexity. However, the power gain of the TQAM is limited due to the constraint that signal points should be regularly located at the vertexes of contiguous equilateral triangles. In this paper, we investigate two irregular (optimum and suboptimum) TQAMs where signal points are irregularly distributed while preserving the equilateral triangular lattice, and calculate achievable power gains of the proposed constellations. We also address optimum and suboptimum bit stream mapping methods and suggest a simple and optimum detection method for the constellations to be meaningful in practical implementation, and present analytical and simulation results. The proposed constellations can provide the asymptotic power gains of 0.825dB and 0.245dB over SQAM and regular TQAM, respectively.

  • Salient Region Detection Based on Color Uniqueness and Color Spatial Distribution

    Xing ZHANG  Keli HU  Lei WANG  Xiaolin ZHANG  Yingguan WANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1933-1936

    In this study, we address the problem of salient region detection. Recently, saliency detection with contrast based approaches has shown to give promising results. However, different individual features exhibit different performance. In this paper, we show that the combination of color uniqueness and color spatial distribution is an effective way to detect saliency. A Color Adaptive Thresholding Watershed Fusion Segmentation (CAT-WFS) method is first given to retain boundary information and delete unnecessary details. Based on the segmentation, color uniqueness and color spatial distribution are defined separately. The color uniqueness denotes the color rareness of salient object, while the color spatial distribution represents the color attribute of the background. Aiming at highlighting the salient object and downplaying the background, we combine the two characters to generate the final saliency map. Experimental results demonstrate that the proposed algorithm outperforms existing salient object detection methods.

  • Perfect Gaussian Integer Sequence Pairs

    Chengqian XU  Xiuping PENG  Kai LIU  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:7
      Page(s):
    1568-1575

    A novel class of signal of perfect Gaussian integer sequence pairs are put forward in this paper. The constructions of obtaining perfect Gaussian integer sequence pairs of odd length by using Chinese remainder theorem as well as perfect Gaussian integer sequence pairs of even length by using complex transformation and interleaving techniques are presented. The constructed perfect Gaussian integer sequence pairs can not only expand the existence range of available perfect Gaussian integer sequences and perfect sequence pairs signals but also overcome the energy loss defects.

  • Spectrum Sharing Overlay System with a Repeater for the Primary Signal

    Jun NAGANAWA  Kentaro KOBAYASHI  Hiraku OKADA  Masaaki KATAYAMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:7
      Page(s):
    1576-1586

    This paper proposes a new spectrum sharing scheme which uses one-sided collaboration. In the proposed system, the transmitter of the secondary system relays the primary signal and overlays its own data on the retransmitted primary signal. The results of the theoretical analysis show that the proposed scheme with regenerative relay allows the secondary system to communicate at the same speed as the primary system that disregards the presence of the secondary system.

  • Bilayer Lengthened QC-LDPC Codes Design for Relay Channel

    Hua XU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1365-1374

    The relay channel is the common approach to cooperative communication. Quasi-cyclic low-density parity-check (QC-LDPC) code design for the relay channel is important to cooperative communication. This paper proposes a bilayer QC-LDPC code design scheme for the relay channel. Combined with the bilayer graphical code structure, an improved Chinese remainder theorem (CRT) method, the Biff-CRT method is presented. For the proposed method we introduce a finite field approach. The good performance of the finite field based QC-LDPC code can improve the performance of its corresponding objective QC-LDPC code in the proposed scheme. We construct the FF code and the FA code by the Biff-CRT method. The FF code and the FA code are both named as their two component codes. For the FF code, the two component code are both finite field based QC-LDPC codes. For the FA code, one of the component codes is the finite field based QC-LDPC code and the other is the array code. For the existing CRT method, the shortened array code and the array code are usually used as the component codes to construct the SA code. The exponent matrices of FF code, FA code and SA code are given both for the overall graph and the lower graph. Bit error rate (BER) simulation results indicate that the proposed FF code and FA code are superior to the SA code both at the relay node and the destination node. In addition, the theoretical limit and the BER of the bilayer irregular LDPC code are also given to compare with the BER of the proposed QC-LDPC codes. Moreover, the proposed Biff-CRT method is flexible, easy to implement and effective for constructing the QC-LDPC codes for the relay channel, and it is attractive for being used in the future cooperative communication systems.

  • Joint Deblurring and Demosaicing Using Edge Information from Bayer Images

    Du Sic YOO  Min Kyu PARK  Moon Gi KANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:7
      Page(s):
    1872-1884

    Most images obtained with imaging sensors contain Bayer patterns and suffer from blurring caused by the lens. In order to convert a blurred Bayer-patterned image into a viewable image, demosaicing and deblurring are needed. These concepts have been major research areas in digital image processing for several decades. Despite their importance, their performance and efficiency are not satisfactory when considered independently. In this paper, we propose a joint deblurring and demosaicing method in which edge direction and edge strength are estimated in the Bayer domain and then edge adaptive deblurring and edge-oriented interpolation are performed simultaneously from the estimated edge information. Experimental results show that the proposed method produces better image quality than conventional algorithms in both objective and subjective terms.

  • Fundamental LOD-BOR-FDTD Method for the Analysis of Plasmonic Devices

    Jun SHIBAYAMA  Takuto OIKAWA  Tomoyuki HIRANO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    707-709

    The body-of-revolution finite-difference time-domain method (BOR-FDTD) based on the locally one-dimensional (LOD) scheme is extended to a frequency-dependent version for the analysis of the Drude and Drude-Lorentz models. The formulation is simplified with a fundamental scheme, in which the number of arithmetic operations is reduced by 40% in the right-hand sides of the resultant equations. Efficiency improvement of the LOD-BOR-FDTD is discussed through the analysis of a plasmonic rod waveguide and a plasmonic grating.

  • Maximum-Likelihood Acquisition of Spread-Spectrum Signals in Frequency-Selective Fading Channels

    Oh-Soon SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E97-A No:7
      Page(s):
    1642-1645

    A maximum-likelihood code acquisition scheme is investigated for frequency-selective fading channels with an emphasis on the decision strategies. Using the maximum-likelihood estimation technique, we first derive an optimal decision rule, which is optimal in the viewpoint of probability of detection. Based on the derived optimal decision rule, a practical and simple decision rule is also developed, and its performance is assessed for both single dwell and double dwell acquisition systems. Simulation results demonstrate that the proposed acquisition scheme significantly outperforms the previously proposed schemes in frequency-selective fading channels.

  • Software Defined Flexible Optical Access Networks Enabling Throughput Optimization and OFDM-Based Dynamic Service Provisioning for Future Mobile Backhaul Open Access

    Akihiro TANAKA  Neda CVIJETIC  

     
    INVITED PAPER

      Vol:
    E97-B No:7
      Page(s):
    1244-1251

    In this invited paper, software defined network (SDN)-based approaches for future cost-effective optical mobile backhaul (MBH) networks are discussed, focusing on key principles, throughput optimization and dynamic service provisioning as its use cases. We propose a novel physical-layer aware throughput optimization algorithm that confirms > 100Mb/s end-to-end per-cell throughputs with ≥2.5Gb/s optical links deployed at legacy cell sites. We also demonstrate the first optical line terminal (OLT)-side optical Nyquist filtering of legacy 10G on-off-keying (OOK) signals, enabling dynamic >10Gb/s Orthogonal Frequency Domain Multiple Access (OFDMA) λ-overlays for MBH over passive optical network (PON) with 40-km transmission distances and 1:128 splitting ratios, without any ONU-side equipment upgrades. The software defined flexible optical access network architecture described in this paper is thus highly promising for future MBH networks.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Analysis on Effectiveness of Fractional Frequency Reuse for Uplink Using SC-FDMA in Cellular Systems

    Masashi FUSHIKI  Takeo OHSEKI  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1457-1466

    Single Carrier — Frequency Domain Multiple Access (SC-FDMA) is a multiple access technique employed in LTE uplink transmission. SC-FDMA can improve system throughput by frequency selective scheduling (FSS). In cellular systems using SC-FDMA in the uplink, interference arising from user equipments (UEs) in neighboring cells degrades the system throughput, especially the throughput of cell-edge UEs. In order to overcome this drawback, many papers have considered fractional frequency reuse (FFR) techniques and analyzed their effectiveness. However, these studies have come to different conclusions regarding the effectiveness of FFR because the throughput gain of FFR depends on the frequency reuse design and evaluation conditions. Previous papers have focused on the frequency reuse design. Few papers have examined the conditions where FFR is effective, and only the UE traffic conditions have been evaluated. This paper reveals other conditions where FFR is effective by demonstrating the throughput gain of FFR. In order to analyze the throughput gain of FFR, we focus on the throughput relationship between FFR and FSS. System level simulation results demonstrate that FFR is effective when the following conditions are met: (i) the number of UEs is small and (ii) the multipath delay spread is large or close to 0.

  • Parallel Computation of Complex Antennas around the Coated Object Using Iterative Vector Fields Technique

    Ying YAN  Xunwang ZHAO  Yu ZHANG  Changhong LIANG  Zhewang MA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    661-669

    In this paper, a novel hybrid technique for analyzing complex antennas around the coated object is proposed, which is termed as “iterative vector fields with Physical Optics (PO)”. A closed box is used to enclose the antennas and the complex field vectors on the box' surfaces can then be obtained using Huygens principle. The equivalent electromagnetic currents on Huygens surfaces are computed by Higher-order Method of Moments (HOB-MoM) and the fields scattered from the coated object are calculated by PO method. In addition, the parallel technique based on Message Passing Interface (MPI) and Scalable Linear Algebra Package (ScaLAPACK) is employed so as to accelerate the computation. Numerical examples are presented to validate and to show the effectiveness of the proposed method on solving the practical engineering problem.

  • Parallel Use of Dispersion Devices for Resolution Improvement of Optical Quantization at High Sampling Rate

    Tomotaka NAGASHIMA  Takema SATOH  Petre CATALIN  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    787-794

    We investigate resolution improvement in optical quantization with keeping high sampling rate performance in optical sampling. Since our optical quantization approach uses power-to-wavelength conversion based on soliton self-frequency shift, a spectral compression can improve resolution in exchange for sampling rate degradation. In this work, we propose a different approach for resolution improvement by parallel use of dispersion devices so as to avoid sampling rate degradation. Additional use of different dispersion devices can assist the wavelength separation ability of an original dispersion device. We demonstrate the principle of resolution improvement in 3 bit optical quantization. Simulation results based on experimental evaluation of 3 bit optical quantization system shows 4 bit optical quantization is achieved by parallel use of dispersion devices in 3 bit optical quantization system. The maximum differential non-linearity (DNL) and integral non-linearity (INL) are 0.49 least significant bit (LSB) and 0.50 LSB, respectively. The effective number of bits (ENOB) estimated to 3.62 bit.

1461-1480hit(6809hit)