The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

1581-1600hit(6809hit)

  • Single Symbol Decodable QO-STBC with Full Diversity

    Naotoshi YODA  Chang-Jun AHN  Ken-ya HASHIMOTO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    2-6

    Space-time block code (STBC) with complex orthogonal designs achieves full diversity with a simple maximum-likelihood (ML) decoding, however, do not achieve a full transmission rate for more than two antennas. To attain a higher transmission rate, STBC with quasi-orthogonal designs were proposed, whereas there are interference terms caused by relaxing the orthogonality. It has an impact on decoding complexity because a receiver needs to decode two symbols at a time. Moreover, QO-STBC does not achieve full diversity. In this paper, we propose a scheme which makes possible to decode symbols one by one, and two schemes which gain full transmission diversity by upsetting the balance of the transmit power and rotating constellation.

  • Location Adaptive Least Square Algorithm for Target Localization in Multi-Static Active Sonar

    Eun Jeong JANG  Dong Seog HAN  

     
    PAPER-Sensing

      Vol:
    E97-B No:1
      Page(s):
    204-209

    In multi-static sonar systems, the least square (LS) and maximum likelihood (ML) are the typical estimation criteria for target location estimation. The LS localizaiton has the advantage of low computational complexity. On the other hand, the performance of LS can be degraded severely when the target lies on or around the straight line between the source and receiver. We examine mathematically the reason for the performance degradation of LS. Then, we propose a location adaptive — least square (LA-LS) localization that removes the weakness of the LS localizaiton. LA-LS decides the receivers that produce abnormally large measurement errors with a proposed probabilistic measure. LA-LS achieves improved performance of the LS localization by ignoring the information from the selected receivers.

  • Ideas, Inspirations and Hints Those I Met in the Research of Electromagnetic Theory Open Access

    Kazuo TANAKA  

     
    INVITED PAPER

      Vol:
    E97-C No:1
      Page(s):
    3-10

    “How to get the original ideas” is the fundamental and critical issue for the researchers in science and technology. In this paper, the author writes his experiences concerning how he could encounter the interesting and original ideas of three research subjects, i.e., the accelerating medium effect, the guided-mode extracted integral equation and the surface plasmon gap waveguide.

  • Analysis of the Network Gains of SISO and MISO Single Frequency Network Broadcast Systems

    Sungho JEON  Jong-Seob BAEK  Junghyun KIM  Jong-Soo SEO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:1
      Page(s):
    182-189

    The second generation digital terrestrial broadcasting system (DVB-T2) is the first broadcasting system employing MISO (Multiple-Input Single-Output) algorithms. The potential MISO gain of this system has been roughly predicted through simulations and field tests. Of course, the potential MISO SFN gain (MISO-SFNG) differs according to the simulation conditions, test methods, and measurement environments. In this paper, network gains of SISO-SFN and MISO-SFN are theoretically derived. Such network gains are also analyzed with respect to the receive power imbalance and coverage distances of SISO and MISO SFN. From the analysis, it is proven that MISO-SFNG is always larger than SISO SFN gain (SISO-SFNG) in terms of the achievable SNR. Further, both MISO-SFNG and SISO-SFNG depend on the power imbalance, but the network gains are constant regardless of the modulation order. Once the field strength of the complete SFN is obtained by coverage planning tools or field measurements, the SFN service coverage can be precisely calibrated by applying the closed-form SFNG formula.

  • Fast DFRFT Robust Watermarking Algorithm Based on the Arnold Scrambling and OFDM Coding

    Wenkao YANG  Jing GUO  Enquan LI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    218-225

    Combining the strong anti-interference advantages of OFDM technology and the time-frequency analysis features of fractional Fourier transform (FFT), we apply OFDM as the coding modulation technology for digital watermarking. Based on the Arnold scrambling and OFDM coding, an innovative DFRFT digital watermarking algorithm is proposed. First, the watermark information is subjected to the Arnold scrambling encryption and OFDM coding transform. Then it is embedded into the FFT domain amplitude. The three parameters of scrambling iterations number, t, FFT order, p, and the watermark information embedded position, L, are used as keys, so that the algorithm has high safety. A simulation shows that the algorithm is highly robust against noise, filtering, compression, and other general attacks. The algorithm not only has strong security, but also makes a good balance between invisibility and robustness. But the possibility of using OFDM technique in robust image watermarking has drawn a very little attention.

  • Sentence-Level Combination of Machine Translation Outputs with Syntactically Hybridized Translations

    Bo WANG  Yuanyuan ZHANG  Qian XU  

     
    LETTER-Natural Language Processing

      Vol:
    E97-D No:1
      Page(s):
    164-167

    We describe a novel idea to improve machine translation by combining multiple candidate translations and extra translations. Without manual work, extra translations can be generated by identifying and hybridizing the syntactic equivalents in candidate translations. Candidate and extra translations are then combined on sentence level for better general translation performance.

  • Packetization and Unequal Erasure Protection for Transmission of SPIHT-Encoded Images

    Kuen-Tsair LAY  Lee-Jyi WANG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    226-237

    Coupled with the discrete wavelet transform, SPIHT (set partitioning in hierarchical trees) is a highly efficient image compression technique that allows for progressive transmission. One problem, however, is that its decoding can be extremely sensitive to bit errors in the code sequence. In this paper, we address the issue of transmitting SPIHT-encoded images via noisy channels, wherein errors are inevitable. The communication scenario assumed in this paper is that the transmitter cannot get any acknowledgement from the receiver. In our scheme, the original SPIHT code sequence is first segmented into packets. Each packet is classified as either a CP (critical packet) or an RP (refinement packet). For error control, cyclic redundancy check (CRC) is incorporated into each packet. By checking the CRC check sum, the receiver is able to tell whether a packet is correctly received or not. In this way, the noisy channel can be effectively modeled as an erasure channel. For unequal error protection (UEP), each of those packets are repeatedly transmitted for a few times, as determined by a process called diversity allocation (DA). Two DA algorithms are proposed. The first algorithm produces a nearly optimal decoded image (as measured in the expected signal-to-noise ratio). However, its computation cost is extremely high. The second algorithm works in a progressive fashion and is naturally compatible with progressive transmission. Its computation complexity is extremely low. Nonetheless, its decoded image is nearly as good. Experimental results show that the proposed scheme significantly improves the decoded images. They also show that making distinction between CP and RP results in wiser diversity allocation to packets and thus produces higher quality in the decoded images.

  • A Method of Analog IC Placement with Common Centroid Constraints

    Keitaro UE  Kunihiro FUJIYOSHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:1
      Page(s):
    339-346

    To improve immunity against process gradients, a common centroid constraint, in which every pair of capacitors should be placed symmetrically with respect to a common center point, is widely used. The pair of capacitors are derived by dividing some original capacitors into two halves. Xiao et al. proposed a method to obtain a placement which satisfies the common centroid constraints, but this method has a defect. In this paper, we propose a decoding algorithm to obtain a placement which satisfies common centroid constraints.

  • Handoff Delay-Based Call Admission Control in Cognitive Radio Networks

    Ling WANG  Qicong PENG  Qihang PENG  

     
    PAPER-Network

      Vol:
    E97-B No:1
      Page(s):
    49-55

    In this paper, we investigate how to achieve call admission control (CAC) for guaranteeing call dropping probability QoS which is caused by handoff timeout in cognitive radio (CR) networks. When primary user (PU) appears, spectrum handoff should be initiated to maintain secondary user (SU)'s link. We propose a novel virtual queuing (VQ) scheme to schedule spectrum handoff requests sent by multiple SUs. Unlike the conventional first-come-first-served (FCFS) scheduling, resuming transmission in the original channel has higher priority than switching to another channel. It costs less because it avoids the cost of signaling frequent spectrum switches. We characterize the handoff delay on the effect of PU's behavior and the number of SUs in CR networks. And user capacity under certain QoS requirement is derived as a guideline for CAC. The analytical results show that call dropping performance can be greatly improved by CAC when a large amount of SUs arrives fast as well as the VQ scheme is verified to reduce handoff cost compared to existing methods.

  • Multiple CFO Estimation Using the Properties of Zadoff-Chu Sequence

    Rothna PEC  Chang-Hwan PARK  Yong-Soo CHO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:1
      Page(s):
    429-431

    In this letter, an estimation technique for multiple CFOs is proposed that uses the properties of the Zadoff-Chu (ZC) sequence. After initial estimation of multiple CFOs by using the properties of the ZC sequence, accurate estimates are obtained in the proposed technique by an iterative procedure. The proposed technique can be applied to LTE-based CoMP systems where ZC sequences are used to generate synchronization signals in downlink and random access preambles in uplink.

  • A New Higher Order Differential of CLEFIA

    Naoki SHIBAYAMA  Toshinobu KANEKO  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    118-126

    CLEFIA is a 128-bit block cipher proposed by Shirai et al. at FSE2007. It has been reported that CLEFIA has a 9-round saturation characteristic, in which 32bits of the output of 9-th round 112-th order differential equals to zero. By using this characteristic, a 14-round CLEFIA with 256-bit secret key is attacked with 2113 blocks of chosen plaintext and 2244.5 times of data encryption. In this paper, we focused on a higher order differential of CLEFIA. This paper introduces two new concepts for higher order differential which are control transform for the input and observation transform for the output. With these concepts, we found a new 6-round saturation characteristic, in which 24bits of the output of 6-th round 9-th order differential equals to zero. We also show a new 9-round saturation characteristic using 105-th order differential which is a 3-round extension of the 6-round one. If we use it, instead of 112-th order differential, using the meet-in-the-middle attack technique for higher order differential table, the data and computational complexity for the attack to 14-round CLEFIA can be reduced to around 2-5, 2-34 of the conventional attack, respectively.

  • Investigation on Frequency Diversity Effects of Various Transmission Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    30-39

    This paper presents frequency diversity effects of localized transmission, clustered transmission, and intra-subframe frequency hopping (FH) using a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the evaluations, we employ the normalized frequency mean square covariance (NFMSV) as a measure of the frequency diversity effect, i.e., randomization level of the frequency domain interleaving associated with turbo coding. Link-level computer simulation results show that frequency diversity is very effective in decreasing the required average received signal-to-noise power ratio (SNR) at the target average block error rate (BLER) using a linear minimum mean-square error (LMMSE) based FDE according to the increase in the entire transmission bandwidth for DFT-precoded OFDMA. Moreover, we show that the NFMSV is an accurate measure of the frequency diversity effect for the 3 transmission schemes for DFT-precoded OFDMA. We also clarify the frequency diversity effects of the 3 transmission schemes from the viewpoint of the required average received SNR satisfying the target average BLER for the various key radio parameters for DFT-precoded OFDMA in frequency-selective Rayleigh fading channels.

  • A New Necessary Condition for Feedback Functions of de Bruijn Sequences

    Zhongxiao WANG  Wenfeng QI  Huajin CHEN  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    152-156

    Recently nonlinear feedback shift registers (NFSRs) have frequently been used as basic building blocks for stream ciphers. A major problem concerning NFSRs is to construct NFSRs which generate de Bruijn sequences, namely maximum period sequences. In this paper, we present a new necessary condition for NFSRs to generate de Bruijn sequences. The new condition can not be deduced from the previously proposed necessary conditions. It is shown that the number of NFSRs whose feedback functions satisfy all the previous necessary conditions but not the new one is very large.

  • Cryptanalysis of 249-, 250-, ..., 256-Bit Key HyRAL via Equivalent Keys

    Yuki ASANO  Shingo YANAGIHARA  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    371-383

    HyRAL is a blockcipher whose block size is 128bits, and it supports the key lengths of 128, 129, ..., 256bits. The cipher was proposed for the CRYPTREC project, and previous analyses did not identify any security weaknesses. In this paper, we first consider the longest key version, 256-bit key HyRAL, and present the analysis in terms of equivalent keys. We first show that there are 251.0 equivalent keys (or 250.0 pairs of equivalent keys). Next, we propose an algorithm that derives an instance of equivalent keys with the expected time complexity of 248.8 encryptions and a limited amount of memory. Finally, we implement the proposed algorithm and fully verify its correctness by showing several instances of equivalent keys. We then consider shorter key lengths, and show that there are equivalent keys in 249-, 250-, ..., 255-bit key HyRAL. For each of these key lengths, we present the expected time complexity to derive an instance of equivalent keys.

  • Distinguishers on Double-Branch Compression Function and Applications to Round-Reduced RIPEMD-128 and RIPEMD-160

    Yu SASAKI  Lei WANG  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    177-190

    This paper presents differential-based distinguishers against double-branch compression functions and applies them to ISO standard hash functions RIPEMD-128 and RIPEMD-160. A double-branch compression function computes two branch functions to update a chaining variable and then merges their outputs. For such a compression function, we observe that second-order differential paths will be constructed by finding a sub-path in each branch independently. This leads to 4-sum attacks on 47 steps (out of 64 steps) of RIPEMD-128 and 40 steps (out of 80 steps) of RIPEMD-160. Then new properties called a (partial) 2-dimension sum and a q-multi-second-order collision are considered. The partial 2-dimension sum is generated on 48 steps of RIPEMD-128 and 42 steps of RIPEMD-160, with complexities of 235 and 236, respectively. Theoretically, the 2-dimension sum is generated faster than the brute force attack up to 52 steps of RIPEMD-128 and 51 steps of RIPEMD-160, with complexities of 2101 and 2158, respectively. The results on RIPEMD-128 can also be viewed as q-multi-second-order collision attacks. The practical attacks have been implemented and examples are presented. We stress that our results do not impact to the security of full RIPEMD-128 and RIPEMD-160 hash functions.

  • Adaptive Reversible Data Hiding via Integer-to-Integer Subband Transform and Adaptive Generalized Difference Expansion Method

    Taichi YOSHIDA  Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E97-A No:1
      Page(s):
    384-392

    We propose an adaptive reversible data hiding method with superior visual quality and capacity in which an adaptive generalized difference expansion (AGDE) method is applied to an integer-to-integer subband transform (I2I-ST). I2I-ST performs the reversible subband transform and the AGDE method is a state-of-the-art method of reversible data hiding. The results of experiments we performed objectively and perceptually show that the proposed method has better visual quality than conventional methods at the same embedding rate due to low variance in the frequency domain.

  • Doppler Shift Based Target Localization Using Semidefinite Relaxation

    Yan Shen DU  Ping WEI  Wan Chun LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    397-400

    We propose a novel approach to the target localization problem using Doppler frequency shift measurements. We first reformulate the maximum likelihood estimation (MLE) as a constrained weighted least squares (CWLS) estimation, and then perform the semidefinite relaxation to relax the CWLS problem as a convex semidefinite programming (SDP) problem, which can be efficiently solved using modern convex optimization methods. Finally, the SDP solution can be used to initialize the original MLE which can provide estimates achieve the Cramer-Rao lower bound accuracy. Simulations corroborate the good performance of the proposed method.

  • N-Shift Zero Correlation Zone Sequence

    Chao ZHANG  Keke PANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E97-A No:1
      Page(s):
    432-435

    N-Shift Zero Correlation Zone (NS-ZCZ) sequence is defined with the N-shift zero correlation zone in the correlation function. Namely, the N-shift zero only appears within the correlation zone symmetrically distributed in the center of the correlation function. Moreover, the traditional ZCZ sequences can be considered as the N-shift ZCZ sequence with N=1. Similar to ZCZ sequence, NS-ZCZ sequences can be applied in sequence design for co-channel interference mitigation with more sequences in the sequence set compared with the traditional N-shift sequences. In this letter, the definition and construction algorithms are proposed. The corresponding theoretical bounds are analyzed.

  • Channel Correlation Estimation Exploiting Pilots for an OFDM System with a Comb-Type Pilot Pattern

    Eunchul YOON  Suhan CHOI  Unil YUN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    164-170

    Two channel correlation estimation (CCE) schemes exploiting pilots are presented for an OFDM system with a comb-type pilot pattern under the assumption that there exist virtual subcarriers in the OFDM block. Whereas the first scheme is designed based on the conventional regularized-least square (LS) approach, the second scheme is designed by a newly devised technique based on LS. As the second scheme removes the necessity of computing the matrix inverse by making the minimum eigenvalue of the inversed matrix positive, it leads to reduced implementation complexity and improved performance. It is shown by simulation that the proposed CCE schemes substantially enhance the mean equare error and symbol error rate performances of the MMSE based channel estimation by providing more accurate channel correlation information.

  • Second-Order Perturbative Analysis with Approximated Integration for Propagation Mode in Two-Dimensional Two-Slab Waveguides

    Naofumi KITSUNEZAKI  

     
    PAPER-Optical Waveguide Analysis

      Vol:
    E97-C No:1
      Page(s):
    11-16

    We calculated propagation constants of supermodes for two-dimensional two-slab waveguides, with small core gap, using second-order perturbation expansion from gapless slab waveguide system, and compared our results with the existing works. In the perturbation calculation, we used trapezoidal method to calculate the integral over the transverse direction in space and obtained second-order expansion of (core gap)/(core width) for propagation constants. Our result can explain the qualitative relationship between the propagation constants and the gap distance in the neighbor of (core gap)/(core width) being zero.

1581-1600hit(6809hit)